
Introduction
Filter Overview
Simple Example

Conclusions

Introduction to Kalman Filtering

An Engineer’s Perspective

Gilbert Gede

January 20, 2011

Gilbert Gede Introduction to Kalman Filtering



Introduction
Filter Overview
Simple Example

Conclusions

Outline

1 Introduction
Motivation
History
My Approach

2 Filter Overview
What it is
Step by Step
Covariance Matrices?

3 Simple Example
System
Filter Formulation
Simulation

4 Conclusions
Conclusions

Gilbert Gede Introduction to Kalman Filtering



Introduction
Filter Overview
Simple Example

Conclusions

Motivation
History
My Approach

Measurement of a Dynamic System

Let’s say we have a physical, dynamic system

Normally, we want to measure the states

This can be problematic, due to real-world limitations on
sensors

So we use filters and observers
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Limitations of Sensors

Unfortunate things about the real world we are all familiar with

Not all quantities can be directly measured

Size & Cost

Noise & Biases
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Sensor Fusion

Sensor fusion is the process of combining multiple sensor readings
to create a more useful measurement.
I do not believe all Kalman Fitlers are necessarily fusing multiple
sensors.
Most do though.
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History of the Kalman Filter

Developed around 1960 mainly by Rudolf E. Kalman. It was
originally designed for aerospace guidance applications. While it is
the optimal observer for system with noise, this only true for the
linear case. A non-linear Kalman Filter can not be proven to be
optimal.
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Targeted at Mechanical Systems and MEMs Sensors

I’m really only interested in measuring mechanical systems, so
most of what I describe and present will be with this focus.
The sensors I have tried to build my understanding around are
similar to the MEMs sensors we have been using in the lab.
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What is Not Covered

I’m not going to go through the derivation of the filter, mainly
because I haven’t done it myself.
I’m also not going to discuss more than the linear and Extended
Kalman Filters.
There are other versions, such as the continuous filter, or the
continuous-discrete filter (for a continuous system with discrete
measurement points), but I have not studied these yet.
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Two Step, Discrete

SystemDescription

ẋ = Ax + Bu

z = Hx

TimeUpdate

xk+1 = Ax + Bu

Pk+1 = APkA
T + Q

MeasurementUpdate

K = PkH
T (HPkH

T + R)−1

xk+1 = xk + K(yk − Hxk)
Pk+1 = (I − KH)Pk

I didn’t completely understand the Kalman
Filter until I though of it in a specific sense:
A discrete/digital filter, with two different
steps as part of each cycle.
This doesn’t really define a Kalman Filter,
but it is how I am thinking about it.
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The Filter Cycle

SystemDescription

ẋ = Ax + Bu

z = Hx

TimeUpdate

xk+1 = Ax + Bu

Pk+1 = APkA
T + Q

MeasurementUpdate

K = PkH
T (HPkH

T + R)−1

xk+1 = xk + K(yk − Hxk)
Pk+1 = (I − KH)Pk

As stated, this is a two-step filter.

One step is based on the system
dynamics

The other is based on the sensor inputs

These are tied together with 3
covariance matrices and the Kalman
Gain
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System Description

SystemDescription

ẋ = Ax + Bu

z = Hx

TimeUpdate

xk+1 = Ax + Bu

Pk+1 = APkA
T + Q

MeasurementUpdate

K = PkH
T (HPkH

T + R)−1

xk+1 = xk + K(yk − Hxk)
Pk+1 = (I − KH)Pk

It is very important to note that z
represents the sensor measurement, but
calculated from the states.
Another way to say this is that you need to
be able to calculate something that ideally
would give the sensor measurement, from
only the states.
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Time Update

SystemDescription

ẋ = Ax + Bu

z = Hx

TimeUpdate

xk+1 = Ax + Bu

Pk+1 = APkA
T + Q

MeasurementUpdate

K = PkH
T (HPkH

T + R)−1

xk+1 = xk + K(yk − Hxk)
Pk+1 = (I − KH)Pk

The states get updated based on the
known system inputs and system dynamics.
The state covariance matrix (Pk) is
updated by the state matrix and process
noise covariance matrix (Q).
It should be noted that if (Pk) = 0, that it
will have the process noise updated after
this step.
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Time Update: EKF

SystemDescription

ẋ = f (x , u)
z = h(x)

TimeUpdate

ẋ = f (x , u)
Pk+1 = APkA

T + Q

MeasurementUpdate

K = PkH
T (HPkH

T + R)−1

xk+1 = xk + K(yk − Hxk)
Pk+1 = (I − KH)Pk

When dealing with the extended Kalman
Filter, before the time update step, you
would linearize the state space model to
get the state matrix, A.
If the process noise covariance matrix, Q, is
dependent on the states, then it needs to
be calculated before the time update as
well.
The measurement, u, will be the from the
next step (we use the old one).
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Measurement Update

SystemDescription

ẋ = Ax + Bu

z = Hx

TimeUpdate

xk+1 = Ax + Bu

Pk+1 = APkA
T + Q

MeasurementUpdate

K = PkH
T (HPkH

T + R)−1

xk+1 = xk + K(yk − Hxk)
Pk+1 = (I − KH)Pk

The Kalman gain is calculated from state
covariance matrix, P, observation matrix,H
and the measurement noise covariance
matrix, R.
The state is updated from the Kalman gain
and the error between the calculated sensor
output and the actual sensor output
(measured at this point).
The state covariance matrix, P, is updated
by the Kalman gain, K, and the
observation matrix, H.
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Measurement Update

SystemDescription

ẋ = Ax + Bu

z = Hx

TimeUpdate

xk+1 = Ax + Bu

Pk+1 = APkA
T + Q

MeasurementUpdate

K = PkH
T (HPkH

T + R)−1

xk+1 = xk + K(yk − Hxk)
Pk+1 = (I − KH)Pk

I feel it is important to note that the
Kalman gain, while calculated from the
measurement noise covariance matrix, R,
does not necessarily have to have non-zero
entries in all rows.
In fact, R does not have to be the same
size as the state matrix.
This can lead to not all states being
affected during the measurement update
step, which can lead to an unsuccessful
filter implementation.
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Measurement Update: EFK

SystemDescription

ẋ = f (x , u)
z = h(x)

TimeUpdate

ẋ = f (x , u)
Pk+1 = APkA

T + Q

MeasurementUpdate

K = PkH
T (HPkH

T + R)−1

xk+1 = xk + K(yk − Hxk)
Pk+1 = (I − KH)Pk

When dealing with the extended Kalman
Filter, before the measurement update
step, you would linearize the observation
function to get, H.
If the sensor noise covariance matrix, R, is
dependent on the states, then it needs to
be calculated before the time update as
well.
I’m not really sure how often the sensor
noise will be dependent on the states
though.
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The Three Covariance Matrices

SystemDescription

ẋ = Ax + Bu

z = Hx

TimeUpdate

xk+1 = Ax + Bu

Pk+1 = APkA
T + Q

MeasurementUpdate

K = PkH
T (HPkH

T + R)−1

xk+1 = xk + K(yk − Hxk)
Pk+1 = (I − KH)Pk

As seen in the filter equations, there are
three covariance matrices:

Pk , the state covariance matrix

Q, the process covariance matrix

R, the measurement covariance matrix
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What is a Covariance Matrix?

SystemDescription

ẋ = Ax + Bu

z = Hx

TimeUpdate

xk+1 = Ax + Bu

Pk+1 = APkA
T + Q

MeasurementUpdate

K = PkH
T (HPkH

T + R)−1

xk+1 = xk + K(yk − Hxk)
Pk+1 = (I − KH)Pk

This raises the question, what is a
covariance matrix?

If we have a value, xi , there is an
expected value, E (xi ) = µi .

The variance is defined as
var(xi ) = E [(xi − µi )

2].

Covariance is used to describe the
relationship between two variables.

cov(xj , xk) = E [(xj − µj)(xk − µk)]

Remember, standard deviation is
σ =

√

E [(x − µ)2]
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What is a Covariance Matrix?

SystemDescription

ẋ = Ax + Bu

z = Hx

TimeUpdate

xk+1 = Ax + Bu

Pk+1 = APkA
T + Q

MeasurementUpdate

K = PkH
T (HPkH

T + R)−1

xk+1 = xk + K(yk − Hxk)
Pk+1 = (I − KH)Pk

As you can imagine, you could provide a
standard deviation for every state,
parameter, and sensor measurement. One
would think this would allow a
straightforward calculation of these
covariance matrices.
This would be incorrect though, as not all
variables are correlated. This is where a lot
of the work in creating a successful filter is
as far as I can tell.

Gilbert Gede Introduction to Kalman Filtering



Introduction
Filter Overview
Simple Example

Conclusions

What it is
Step by Step
Covariance Matrices?

The Measurement Noise Covariance Matrix

SystemDescription

ẋ = Ax + Bu

z = Hx

TimeUpdate

xk+1 = Ax + Bu

Pk+1 = APkA
T + Q

MeasurementUpdate

K = PkH
T (HPkH

T + R)−1

xk+1 = xk + K(yk − Hxk)
Pk+1 = (I − KH)Pk

I believe this is the simplest to understand.
It represents the covariance of all the
sensors.
Usually, our sensors will not be related, so
the matrix takes a form similar to this:

R =

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ2
1 0

σ2
2

. . .

0 σ2
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

There will probably be some constant
values in there too
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The Process Noise Covariance Matrix

SystemDescription

ẋ = Ax + Bu

z = Hx

TimeUpdate

xk+1 = Ax + Bu

Pk+1 = APkA
T + Q

MeasurementUpdate

K = PkH
T (HPkH

T + R)−1

xk+1 = xk + K(yk − Hxk)
Pk+1 = (I − KH)Pk

The process noise covariance matrix is a
little more difficult. I’m not sure I am in
the best position to describe it, but it is
basically describing the error in the state
matrix. There is a more correct way to
define, but I will leave that at the end.
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The State Covariance Matrix

SystemDescription

ẋ = Ax + Bu

z = Hx

TimeUpdate

xk+1 = Ax + Bu

Pk+1 = APkA
T + Q

MeasurementUpdate

K = PkH
T (HPkH

T + R)−1

xk+1 = xk + K(yk − Hxk)
Pk+1 = (I − KH)Pk

In an informal sense, similar to my previous
description of the process covariance
matrix, the state covariance matrix
represents the estimated error.
It is different however, in that it if updated
along with the state at each step.
We can look at these values and then get
an idea for how accurate our current
estimation is.
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The State Covariance Matrix

SystemDescription

ẋ = Ax + Bu

z = Hx

TimeUpdate

xk+1 = Ax + Bu

Pk+1 = APkA
T + Q

MeasurementUpdate

K = PkH
T (HPkH

T + R)−1

xk+1 = xk + K(yk − Hxk)
Pk+1 = (I − KH)Pk

I have not yet completely explored all of
the information that this matrix represents,
and have instead just left it alone.
One important observation: for
initialization, setting it to 0 seems to work,
as the update steps seem to correct it
quickly.
From what I have read however, this will
not always be the case (especially for the
EKF).
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Example System

Now I will go through an example problem. The system will be a
particle moving in a plane, with 4 states and 2 inputs.

x =









x

u

y

v









, ẋ =









0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0









x +









0 0
1 0
0 0
0 1









[

ax

ay

]

z =

[

1 0 0 0
0 0 1 0

]

It is basically a double integrator, with acceleration as an input,
and positions which can be measured by sensors.
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Example System

So, for this example, we have two sets of sensors: accelerometers
and position sensors (like GPS).
These sensors will have simulated noise, just like real sensors.
We will use the Kalman Filter to estimate fuse the sensor readings
and estimate the position.
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Discretization

The first step is to rewrite the continuous state space model as a
discrete model.

ẋk+1 =









1 dt 0 0
0 1 0 0
0 0 1 dt

0 0 0 1









xk +









∆t2/2 0
∆t 0
0 ∆t2/2
0 ∆t









[

ax

ay

]

where x =









x

u

y

v








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Covariance Matrices

The next thing we have to provide to the filter description is the
sensor & measurement covariance matrices. We will start with the
sensor covariance matrix.
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Sensor Covariance Matrix

The sensor noise covariance matrix is easiest to form; it is:

R =

[

σ2
gpsx

0

0 σ2
gpsy

]

The value is simply the standard deviation of the sensor squared,
or the variance of the sensor.
There is no coupling (in this example) between the x and y
positions as reported by the ”GPS” sensor.
I’m not sure if this is true in real life as well...

Gilbert Gede Introduction to Kalman Filtering



Introduction
Filter Overview
Simple Example

Conclusions

System
Filter Formulation
Simulation

Process Covariance Matrix

The process covariance matrix is slightly more complicated. A
more detailed version of the state space model needs to be used.

ẋ = Ax + Bu + v

Understanding that the noise in this step is introduced from the
accelerometer we can rewrite the system as follows:

ẋk+1 =









1 dt 0 0
0 1 0 0
0 0 1 dt

0 0 0 1









xk +









∆t2/2 0
∆t 0
0 ∆t2/2
0 ∆t









[

ax + vx

ay + vy

]
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Process Covariance Matrix

We can then take the derivative of the state vector with regards to
the noises.
This will be defined as F = δx

δv
.

It can be seen that this will simply be the B matrix, due to linearity.
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Process Covariance Matrix

If we define Rv = E [(vi − v)(vi − v)], where v is the noise vector,
we would get a 2x2 matrix.
This matrix should actually be diagonal though, because the sensor
error will not be coupled.

This gives Rv =

[

σ2
accx

0
0 σ2

accy

]

.
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Process Covariance Matrix

Finally, we can define Q.

Q = FRvF
T = σ2

acc









∆t4/4 ∆t3/2 0 0
∆t3/2 ∆t2 0 0

0 0 ∆t4/4 ∆t3/2
0 0 ∆t3/2 ∆t2









When dealing with the EKF, F might need to be linearized at each
time step. This would happen at the same time as the linearization
of A.
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Simulation Parameters

We are now ready to simulate this system.
We need to specify the simulation parameters first.

∆t = .1sec

σgps = 2m

σacc = .5m
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Simulation Inputs

The inputs to the model follow:

accx = 1 + sin(t)

accy = 2 + 5sin(t)

x = t2/2 − sin(t)

y = t2
− 5cos(t)

The appropriate noises are added on top of these measurements.
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Simulation Results

The system was simulated for 8 seconds.
Results follow.
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Simulation Results
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Figure: Figure 1. This shows the simplest forms of position estimation
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Simulation Results
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Figure: Figure 2. This shows the results of the Kalman Filter
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Simulation Results

We can see that the results with the filter are much better.
The calculated standard deviations for each method are:

σkalman ≈ 0.6m

σgps ≈ 1.6m

σacc ≈ 2.5m

Obviously, for longer simulation times the error gets much larger
with the dead reckoning case.
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Success?

I think it is safe to say that this filter implementation is successful.
I believe we can also say it is optimal.
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Next Steps

With this simple example, we could next try estimating sensor
biases.
I did not include any here, but estimating biases usually seems to
be successful.
This would be done by adding an extra state, assuming it was
constant in time updates, and ensuring that there were proper
covariances describing it.
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Next Steps

Exploration of other Kalman Filter types could be useful too.
There exists the continuous filter and continuous-discrete filter; we
have discussed the EKF, but there also exists the Unscented
Kalman Filter for highly nonlinear systems. There are also square
root forms and triangular forms.
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