Wet-Chemical Etching of Silicon

Revised: 2012-02-11 Source: www.microchemicals.eu/technical_information

Our Poster "Crystalline Silicon"

Crystallography, etch rates of Si (isotropic and anisotropic) and SiO_2 , Si-wafer production, summarized on a DIN A0 Poster ... Interested? Gladly we send you one or more posters for free (only valid for Europe)! Just send us a short e-mail: info@microchemicals.de

Our Si Wafer Stock List: Si-Wafers.

Since 2010, we supply our customers - beside photoresists, solvents, and etchants - also with c-Si wafers (2 - 8 inch, one- and double-side polished, optionally with SiO_2 and Ni_3N_4). Therefore, we are happy to provide you with technical support also in this field of microstructuring. Thank you for your interest!

Anisotropic Silicon Etching

Strong alkaline substances (pH > 12) such as aqueous KOH- or TMAH-solutions etch Si via Si + 4 OH⁻ \rightarrow Si(OH)₄ + 4e⁻.

Since the bonding energy of Si atoms is different for each crystal plane, and KOH/TMAH Si etching is not diffusion- but etch rate limited, Si etching is highly anisotropic: While the $\{100\}$ - and $\{110\}$ -crystal planes are being etched, the stable $\{111\}$ planes act as an etch stop:

(111)-orientated Si-wafers are almost not attacked by the etch.

(100)-orientated wafers form square-based pyramids with $\{111\}$ surfaces. These pyramids are realised on c-Si solar cells for the purpose of reflection minimization.

(110)-orientated wafers form perpendicular trenches with $\{111\}$ side-walls, used as e. g. microchannels in micromechanics and microfluidics.

The degree of anisotropy (= etch rate selectivity between different crystal planes), the etch rates, and the etching homogeneity depend on the etching temperature, atomic defects in the silicon crystal, intrinsic impurities of the Si crystal, impurities (metal ions) by the etchant, and

the concentration of Siatoms already etched.

The doping concentration of the Si to be etched also strongly impacts on the etching: During etching, Boron doped Si forms borosilicate glass on the surface which acts as etch stop if the boron doping concentration exceeds 10¹⁹ cm⁻³.

The following table lists etch rates of Si and the hard masks Si_xN_y and SiO_2 , and etch selectivity between different crystal planes as a function of the etchant.

Isotropic Etching of Silicon and SiO₂

Etchant	Etch rate ratio		Etch rate (absolute)			Advantages (+)		
	(100)/(111)	(110)/(111)	(100)	Si_3N_4	SiO ₂	Disadvantages (-)		
КОН	300	600	1.4 μm/min	<1 Å/min	14 Å/min	(-) Metal ion containing		
(44%, 85°C)	500					(+) Strongly anisotropic		
ТМАН	37	68	0.3-1 μm/min <	<1 Å/min	2 Å/min	(-) Weak anisotropy		
(25%, 80°C)	57					(+) Metal ion free		
FDP	20	10	1.25 μm/min	1 Å/min	2 Å/min	(-) Weak anisotropy , toxic		
(115°C)						(+) Metal ion free, metallic hard masks possible		

The following chemical reactions summarize the basic etch mechanism for isotropic silicon etching (steps 1-4), and SiO_2 (only step 4) using a HF/HNO₃ etching mixture:

(1)	NO_2	forn	nation	(HNO ₂	always in	traces	in H	NO_3):
(-)								-

(2) Oxidation of silicon by NO₂:

(3) Formation of SiO_2 :

(4) Etching of SiO₂:

In conclusion, HNO₃ oxidises Si, and HF etches the SiO₂ hereby formed.

Fig. right-hand: High HF : HNO_3 ratios promote rate-limited etching (strong temperature dependency of the etch rate) of Si via the oxidation (1) - (3),

while low HF : HNO_3 ratios promote diffusion-limited etching (lower temperature dependency of the etch rate) via step (4). HNO_3 -free HF etches do not attack Si.

The SiO₂ etch rate is determined by the HF-concentration, since the oxidation (1) - (3) does not account. Compared to thermal oxide, deposited (e. g. CVD) SiO₂ has a higher etch rate due to its porosity; wet oxide a slightly higher etch rate than dry oxide for the same reason.

An accurate control of the etch rate requires a temperature control within \pm 0.5°C. Dilution with acidic acid improves wetting of the hydrophobic Si-surface and thus increases and homogenizes the etch rate.

Doped (n- and p-type) silicon as well as phosphorus-doped SiO_2 etches faster than undoped Si or SiO_2 .

Disclaimer of Warranty

All information, process guides, recipes etc. given in this brochure have been added to the best of our knowledge. However, we cannot issue any guarantee concerning the accuracy of the information.

We assume no liability for any hazard for staff and equipment which might stem from the information given in this brochure.

Generally speaking, it is in the responsibility of every staff member to inform herself/himself about the processes to be performed in the appropriate (technical) literature, in order to minimize any risk to man or machine.

AZ and the AZ logo are registered trademarks of AZ Electronic Materials (Germany) GmbH.

(1) - (3), red etchate) via [HF] Increasing etch rate temperature dependency VD) vet or Increasing selectivity Si/ SiO₂ [H₂O]+[CH₃COOH] [HNO₃]

 \rightarrow 2 NO₂ + H₂O

→ Si²⁺ + 2 NÕ₂⁻

 \rightarrow H₂SiF₆ + 2H₂O

 \rightarrow SiO₂ + H₂

 $HNO_2 + HNO_3$

Si²⁺ + 2 (OH)⁻

2 NO, + Si

 $SiO_2 + 6 HF$