Development of Cellulosic Biofuels

Chris Somerville Energy Biosciences Institute UC Berkeley, LBL, University of Illinois

Current and predicted energy use Current use 13 TW

Global Primary Energy Supply by Fuel*:

* - excludes traditional biomass Source: IEA 2004 & Jim Breson

Potential of carbon-free energy sources

From: Basic Research Needs for Solar Energy Utilization, DOE 2005

~90,000 TW of energy arrives on the earths surface from the sun

Land Usage

Combustion of biomass *can* provide carbon neutral energy

Work

Combustion of biomass *can* provide carbon neutral energy

But it depends on how the biomass is produced and processed

>>A billion acres of agricultural land have been abandoned

Campbell et al., Env. Sci. Technol. (2008) ASAP Article, 10.1021/es800052w

Effect of land use change on soil carbon

Guo & Gifford, Global Change Biology 8,345

>1% yield is feasible

Yield of 26.5 tons/acre observed by Young & colleagues in Illinois, without irrigation

Perennials have more photosynthesis

Courtesy of Steve Long, University of Illinois

Worldwatch 2006

Cellulosic (Miscanthus)

Limited potential of biodiesel

65 biodiesel companies in operation, 50 in construction 2006

Overview of Brazil sugarcane

- 2007-08 harvest 528 MMT
- ~8 M Ha planted by 2008
- ~20 B liters ethanol, 2007
- ~80-120 T/Ha
- ~6400 L ethanol/Ha
- ~333 mills, 200 planned
- Plantings last 5 y, cut one per year
- Large mill
 - 22,000 tons/day
 - 1500 truck loads/day

US Biofuel Production has Expanded Rapidly

US Corn exports are projected to increase

1/ Food, seed, and industrial less ethanol.

Source: 0/3D4 Apricultural Projections to 2017, February 2008. USDA, Economic Research Service.

http://www.ers.usda.gov/briefing/Baseline/crops.htm

Agricultural land use has declined

U.S. planted area: Eight major crops 1/

 The eight major crops are com, sorghum, barley, oats, wheat, rice, upland cotton, and soybeans.

Source: USDA Agricultural Projections to 2017, February 2008. USDA, Economic Research Service.

http://www.ers.usda.gov/briefing/Baseline/crops.htm

Renewable Fuel Standard (Energy Independence and Security Act of 2007)

Year

My Renewable Fuel Standard

Year

US Biomass inventory = 1.3 billion tons

From: Billion ton Vision, DOE & USDA 2005

High yield decreases transportation and land costs

500,000 gal/day scenario

Richard Hamilton, Ceres

Harvesting Miscanthus

http://bioenergy.ornl.gov/gallery/index.html

Response of Miscanthus to nitrogen fertilizer

Christian, Riche & Yates Ind. Crops Prod. (2008)

Perennials have little or no erosion

From Oliveira et al in: Jones and Walsh (eds) Miscanthus for Energy and Fibre, 2001

Soil carbon increases in perennial crops with all aboveground biomass removed

Tilman, Hill & Lehman Science 314,1598

Annual precipitation

Annual Average Precipitation

United States of America

Limiting factors for global NPP

Baldocchi et al. 2004 SCOPE 62

Steps in cellulosic ethanol production

From: Breaking the Biological Barriers to Cellulosic Ethanol

Plants are mostly composed of sugars

Lignin occludes polysaccharides

Humphreys and Chapple, Curr Opin Plant Biol 5,224

A cleavable lignin precursor would fundamentally alter preprocessing

rosmarinic acid

Enzymatic hydrolysis of cellulose is slow

Skopec, Himmel, Matthews, Brady Protein Engineering 16, 1005

Possible routes to improved catalysts

- Explore the enzyme systems used by termites (and ruminants) for digesting lignocellulosic material
- Compost heaps and forest floors are poorly explored
- In vitro protein engineering of promising enzymes
- Develop synthetic organic catalysts (for polysaccharides and lignin)

Dissolution of cellulose in an ionic liquid

(novel pretreatment methods may create fundamental changes)

Cl-

1-Butyl-3-methylimidazolium chloride

Untreated

Treated

Swatloski, Spear, Holbrey, Rogers J. Am. Chem. Soc., 124 (18), 4974 -4975, 2002

Saccharification & Fermentation

Fermentation Yield Cost Impact

NREL

Fermentation of all sugars is essential

Jeffries & Shi Adv Bioch Eng 65,118

Steps in cellulosic ethanol production

From: Breaking the Biological Barriers to Cellulosic Ethanol

Nature offers many alternatives to ethanol

- Plants, algae, and bacteria synthesize alkanes, alcohols, waxes
- Production of hydrophobic compounds would reduce toxicity and decrease the energy required for dehydration

Conversion of sugar to alkanes

Huber et al., (2005) Science 308,1446

The Sleipner Experiment 1 million tons/y; capacity 600 B tons 7000 such sites needed

www.agiweb.org/geotimes

1000 M

The "hydrogen economy"

Visions

- Corn grain ethanol will be displaced by cellulosic fuels (~3-4X reduction in land use)
- Sugarcane use will expand to include both sugar and cellulose (~3-4x reduction in land use)
- Diesel replacements will be obtained from cellulosic materials rather than vegetable oils (~20-40x reduction in temperate acres)
- Ethanol will eventually be displaced by more highly reduced compounds (improved net energy efficiency)
- Synthetic catalysts could be game-changing

Summary of priorities

- Develop energy crops and associated agronomic practices
- Identify or create more active catalysts for conversion of biomass to sugars and sugars to fuels
- Develop industrial microorganisms that ferment all sugars
- Develop new types of microorganisms that produce and secrete hydrophobic compounds
- Understand the social, economic, and environmental implications

The Future

http://genomicsgtl.energy.gov/biofuels/index.shtml