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The electrical properties of the mismatched interface between InAs and GaP have been investigated.
High-resolution transmission electron microscopy images show the presence of strain relieving, 90°
misfit dislocations at this interface. Hall measurements and electrochemical capacitance–voltage
profiling indicate the presence of a high-density sheet of carriers~electrons and holes! at the
interface. A linkage is drawn between interfacial carriers and misfit dislocations. A model based on
Fermi-level pinning in InAs at the interface by misfit dislocations is proposed to account for the
observed electrical behavior. ©1998 American Institute of Physics.@S0003-6951~98!04016-9#
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The growth of epitaxial layers on lattice-mismatch
substrates is a topic that has attracted considerable res
interest. The modes of epilayer growth and the associa
strain relief through the formation of interfacial misfit dislo
cations have been studied for a variety of semiconductor
tems. Most of the attention has been focused on avoid
high interfacial and threading dislocation densities, as th
defects are known to adversely affect device performanc1,2

Comparatively few studies have been carried out on the e
trical activity of misfit dislocations in III–V heteroepitaxia
systems. Similarly, electrical properties of mismatched in
faces have not been well characterized.

In the present study, we have investigated the dir
growth of InAs on~001! GaP substrates. This system d
plays unique properties due to the high mismatch in lat
parameter~11%! as well as the large difference in band g
~InAs: 0.36 eV; GaP: 2.26 eV!. The strain due to lattice
mismatch is relieved by the formation of a regularly spac
(;4 nm) array of~predominantly! 90° pure-edge misfit dis
locations at the InAs/GaP interface.3 The large band offse
between InAs and GaP creates a large confining potenti
the interface, which ensures that the heterojunction is
pleted of carriers.

InAs was grown on~001! GaP by solid-source molecula
beam epitaxy~MBE! using a Varian GEN-II MBE system
Commercially obtained~001! GaP substrates were thermal
cleaned in the growth chamber under aP2 over pressure. A
100 nm GaP buffer layer was grown followed by the grow
of a 20 period superlattice consisting of 5 nm alternat
layers of GaP and AlP in order to prevent the outdiffusion
sulfur from the substrate. Finally, a 200 nm buffer layer
p-GaP (331016 cm23) was grown.

An undoped InAs epilayer was grown at 350 °C. T
first few monolayers of InAs were grown under low V/I
beam flux ratios to promote a smoother interface. Reflec
high-energy electron diffraction was used to monitor surfa
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morphology and growth rates during the deposition. Fina
a 5 nm capping layer of undoped In0.8Al0.2As was grown
above the InAs layer. Samples with varying thickness
InAs in the range of 5–30 nm were grown in this manne

The electrical behavior of the InAs layer and the InA
GaP heterointerface was examined, with emphasis on un
standing electrical activity of the misfit dislocations at t
interface. Lateral conductivity and depth carrier profilin
were employed to characterize the InAs layer. The interf
structure was investigated using high-resolution cro
sectional transmission electron microscopy~HRTEM!. A
model based on Fermi-level pinning at the interface by mi
dislocations is postulated to explain our observations.

Cross-sectional TEM studies were performed using
JEOL 2000 FX microscope with a beam energy of 200 ke
The samples examined maintained an epitaxial relations
between InAs and GaP in all cases. Figure 1 show
HRTEM micrograph of the InAs/GaP heterointerface.
regularly spaced array of predominantly 90° misfit disloc
tions oriented alonĝ110& direction is clearly visible at the
interface. The portions of the interface between the dislo
tions appears to be atomically smooth and free of distortio
Thus, HRTEM shows that the main structural defects at
interface are 90° misfit dislocations.

Hall-effect measurements were performed at room te

FIG. 1. HRTEM micrograph of an InAs epilayer grown on GaP displayi
an interface with a regularly spaced array of 90° misfit dislocations~ar-
rowed!.
9 © 1998 American Institute of Physics
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 This a ub to IP:
perature and at 77 K using both a Hall bar and a standard
der Pauw geometry. The Hall bars were transferred by p
tolithography on the samples, followed by a Ti/Au metal
zation and mesa etching. For the van der Pauw meas
ments, approximately square specimens were cleaved an
dots were alloyed at the four corners at 300 °C in an inert
atmosphere. The sign of the Hall coefficient for each of
samples tested indicated that the majority carriers were e
trons. Table I lists the Hall mobility and sheet carrier co
centrations for samples of differing InAs thickness. It is no
worthy that the sheet carrier density was very hi
(;1013 cm22) and did not vary as a function of epilaye
thickness. This is indicative of a localized high-density sh
of electronic charge in our samples. No ‘‘freeze-out’’ of ca
riers at liquid-N2 temperature was observed. However,
slight decrease in Hall mobility at 77 K was observed.

Carrier-concentration depth profiling was carried out
a sample with 12.5 nm InAs and a 0.4mm capping
In0.8Al0.2As layer in order to understand the distribution
carriers. This was performed using an electrochemical
pacitance voltage profiler manufactured by Bio-Rad M
cromeasurements, Inc. A depth resolution of 1 nm can
achieved with this profiler.4 The resultant semilog plot o
carrier concentration versus depth is shown in Fig. 2. A sp
in the carrier concentration at the InAs/GaP heterointerfac
clearly evident. This sharp increase in carrier concentra
occurs over a very narrow region of;1 – 2 nm, thus con-
firming the presence of a high-density sheet of charge lo
ized at the interface.

We propose an explanation of these results on the b

TABLE I. Sheet carrier concentration and Hall mobility data for InAs e
ilayers of varying thickness grown on GaP at room temperature and liq
nitrogen temperature.

Sample
No.

InAs
Thickness

~nm!

Room temperature 77 K

Sheet
density
(cm22)

Hall
mobility

(cm2/V s)

Sheet
density
(cm22)

Hall
mobility

(cm2/V s)

1 5 1.5 31013 40 1.5 31013 25
2 10 1.2 31013 500 1.0 31013 360
3 15 0.7531013 335 0.7531013 310
4 20 1.0 31013 460 0.9 31013 430
5 30 0.7 31013 795 0.6 31013 730

FIG. 2. Electrochemical capacitance–voltage profile of carrier concentra
vs depth for the~undoped! InAs/(p)GaP heterostructure.
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of the following simple model. A linkage is drawn betwee
the existence of sheet charge and the presence of misfit
locations at the heterointerface. Carrier generation appare
occurs in this system at the heterointerface. The most lik
agent for generation is the network of misfit dislocation
Free surfaces and defects are known to pin the Fermi leve
the conduction band in InAs, thus making the semiconduc
degenerate.5,6 Here, the misfit dislocations are proposed
pin the Fermi level at the interface in the conduction ba
and thus, give rise to a sheet of electronic charge.

To test these hypotheses in terms of an energy-b
model, simulations of InAs/GaP were created using
simulatorADEPT. Figure 3~a! shows the simulated band dia
gram for the ‘‘ideal’’ n2-InAs/p2-GaP interface. Undoped
InAs, being a narrow-gap semiconductor, is expected to
n2 due to thermal carrier generation. The Fermi level of t
InAs at the interface is seen to be at midgap. The band be
ing displayed here indicates that the interface must be
pleted of charge and rectifying in nature. Figure 3~b! shows
the simulated band diagram with a high-density (1013 cm22)
sheet of electrons inserted at the interface. The Fermi lev
the interface is now pinned 0.2 eV above the conducti
band edge and the band diagram shows a narrow pote
well in the InAs, which can act as a two-dimensional ele
tron gas~2DEG! confining carriers near the interface.

Thus, it appears that the effect of the array of mis
dislocations is to generate electrons, which are then confi
in a 2DEG near the interface. These carriers would be

d-

n

FIG. 3. ~a! ADEPT simulation of an ‘‘ideal’’ InAs/GaP heterostructure.~b!
ADEPT simulation of the InAs/GaP heterostructure with a sheet of electro
charge at the interface. Note that the Fermi level is pinned in the conduc
band at the interface.
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 This a
pected to be strongly scattered by the dislocation netw
which results in the low mobility values. As the temperatu
is decreased, the confinement of the carriers would be e
stronger, i.e., the mobility would decrease with decreas
temperature, the opposite of the normally expectedm-T rela-
tionship. This is consistent with the observations made
this system. Ideal electron mobility in InAs i
33 000 cm2/V s.7 As seen from Table I, however, the me
sured mobilities are only a small fraction of the ideal valu
indicating strong carrier scattering. Further, the mobilit
fall slightly at lower temperature, as expected in this mod

From the results and discussion presented here, it is
parent that the InAs/GaP system has unique interfacial p
erties, which holds promise in device applications. In p
ticular, the misfit dislocations could act as conducti
channels for the carriers, akin to the presence of a 2D
work of ‘‘metallic’’ wires in a more resistive medium.

To conclude, we have demonstrated the existence
high-density sheet of electrons at the InAs/GaP heteroin
face. A linkage may exist between this sheet of charge
the interfacial misfit dislocations. A simple model to expla
carrier generation by misfit dislocations has been propo
which is consistent with the observed conduction behavi
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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