

Mechanism of Drag Reduction by Dimples on a Sphere

Colin Smith ME 801 Nov 23, 2010 Previous experiments have found:

Dimpled spheres to have up to 50% reduction of drag of smooth spheres

The drag on a ball to become constant above certain Reynolds' Numbers (Ball Speeds)

Basics of Drag

Skin Friction:

Viscous shear stresses on surface of the object

Form Drag:

Pressure difference on the object

Pressure Coefficient over a Sphere

(a)

Potential flow solution predicts no drag due to pressure [D'Alembert's Paradox] (dotted line)

When viscosity is accounted for, separation occurs and the flow is no longer symmetric (solid line)

http://qm-aerospace.blogspot.com/2007/03/why-do-golf-balls-have-dimples.html

Boundary Layer Separation

Separation occurs when the pressure gradient overcomes the momentum

Laminar vs Turbulent Boundary Layers

10/18/2011

Motivation

http://www.sciencebuddies.org/science-fair-projects/project_ideas/Sports_p012.shtml
Dimples induce a turbulent boundary layer, which has higher momentum and thus delays separation
At Re>10⁴, the majority of drag on a sphere is due to pressure difference, not skin friction

Dimples reduce drag on a sphere as much as 50% when compared to a smooth surface

The drag coefficient remains constant over a range of Reynolds numbers

Turbulent boundary layer is caused by separation bubbles in dimples

Reynolds Number

$$Re_d = \frac{U_o d}{\nu}$$

d= sphere diameter U_o= Free Stream Velocity v= kinematic viscosity

Drag Coefficient

$$C_D = \frac{D}{\frac{1}{2}\rho U_o^2 A}$$

D= Drag Force A=Cross Sectional Area p= Density U_o= Free Stream Velocity

Experimental Setup

Tiger Woods ball speed 185mph=83m/s

(Jeon S, Choi J, Jeon WP , Choi H, Park J)

Free stream velocities varied from 5-28 m/s

Reynolds numbers 0.5x10⁵-2.8x10⁵

Maintains laminar boundary layer over smooth sphere

(Choi J, Jeon WP, Choia H)

Flow Over a Smooth Cylinder

The separation angle over a smooth golf ball sized sphere was measured at 82° for $0.5 \times 10^5 \le \text{Re} \le 2.8 \times 10^5$

Visualization of Flow Separation

 $Re = 1.0 \times 10^5$

 $Re = 2.0 \times 10^5$

- Separation is delayed to ϕ =110°
- Separation angle constant for $Re \ge 0.9 \times 10^5$

The trailing edge of the tested sphere is smooth to better show separation

Measured Drag Coefficient

Effect of Dimples

(Choi J, Jeon WP, Choia H)

Smoke Wire Test

(Choi J, Jeon WP, Choia H)

Shows no vortices are ejected

Velocity Profile at Re=1.0x10⁵

Velocity Profiles at Increasing Re

If $Re > 0.9 \times 10^5$ flow always separates from the surface after dimple V

(Choi J, Jeon WP, Choia H)

Choi J, Jeon WP, Choia H. "Mechanism of Drag Reduction by Dimples on a Sphere." Physics of Fluids. Vol.18 4 041702. 2006

Jeon S, Choi J, Jeon WP, Choi H, Park J, "Active control of flow over a sphere at a sub-critical Reynolds number," J. Fluid Mech. **517**, **113** 2004.

Olson, A. "A Cure for Hooks and Slices? Asymmetric Dimple Patterns and Golf Ball flight." 2007. http://www.sciencebuddies.org/science-fair-projects/project_ideas/Sports_ p012.shtml

Scott, Jeff. "Why do Golf Balls Have Dimples." 2005. http://qmaerospace.blogspot.com/2007/03/why-do-golf-balls-have-dimples.html

Questions?