
Chapter 5

Simulations - Pin

77

5.1 Pin-0.2 2D frictionless circles

5.1.1 Summary

Pin-0.2 is a 2-dimensional frictionless collision simulation for circular bodies. It is geared toward a
system of 1 ball and 10 pins, but is extensible to n bodies. The mechanics stem from the first 2
chapters of [7] and are summarized in the following equations . . .

5.1.2 Impact equations

The relative velocity of B and B� is defined as:

v ≡ V −V� (5.1)

The velocities of B and B�, as well as their relative velocity, increment as follows:

V = V0 +
p

M
(5.2)

V� = V�
0 +

p

M � (5.3)

v = v0 +
p

m
(5.4)

where m is the effective mass

m =
MM �

M +M � (5.5)

The compressive impulse pc is the amount of impulse required to halt compression. In other
words, it is the impulse needed to bring the normal component of relative velocity to 0.

pc = −v3m (5.6)

The energetic coefficient of restitution e∗ is defined in terms of the work done in the normal
direction during compression and restitution:

e2∗ ≡ −
Wn(pf)−Wn(pc)

Wn(pc)
(5.7)

With some effort, it follows that

pf = pc(1 + e∗) (5.8)

= −mv0(1 + e∗) (5.9)

where v0 refers to the initial value of the normal component of relative velocity.
This can be substituted into equations 5.2 and 5.3:

v0 = (V0 −V�
0) · n̂3 (5.10)

Vf = V0 −
mv0
M

(1 + e∗)n̂3 (5.11)

V�
f = V�

0 +
mv0
M � (1 + e∗)n̂3 (5.12)

where ν0 is the normal component of the incident velocity, V0 and V �
0 are the initial velocities of

the 2 bodies, M and M � are the masses, and m is the effective mass. Note that these equations
must be performed in a coordinate system spanned by vectors tangent and normal to the both
bodies at the contact point.

78

5.1.3 Collision detection

Contact is detected by comparing the distance between the centers of 2 objects to the sum of
their radii:

�
(x− x�)2 + (y − y�)2 ⇔ r + r� (5.13)

This needs to be checked for every pair of objects.

5.1.4 Implementation

These equations are computed for each collision. The state vector includes 4 quantities per body:

• x speed

• y speed

• x position

• y position

ode113 is used to compute the constant speed trajectories of the bodies and event location is used
to determine the any pair of bodies begin contact.
The code is organized into subfunctions, subsubfuctions, and subsubsubfunctions as shown in
Figure 5.1.
Collision detection is implemented in an events function:

% ...

for i = 2:nBodies

for j = 1:i-1

value((i-1)*nBodies + j) = sqrt(dx^2 + dy^2) - r(i) - r(j);

end

end

% ...

These i and j indices avoid redundant checks (such as i,j = 1,2 followed by i,j = 2,1). The values
are packed into a vector only because Matlab does not appear to accept them in matrix form.
The indices of the bodies i and j must be deciphered by another function later:

i = floor(ie/nBodies) + 1;

j = ie - (i-1)*nBodies;

79

!"#$%

&'()&%

'*'$+&,)-..#&#-$%

-/'+0"$&."+'%

#1-/231-/2%

#1-/24"..%

)-!1#$'/"+"%

"$#!"+'%

+0"$&5-0!*%

6-&(!6")+*%

0'+0"$&5-0!*%

&'+"00-4&%

&'+)-.-0%

7'($/'8%

&'+"8#&%

6.-+79:'0&%

6.-+"00-4&%

;$/#3%

0-+"(-$!"+0#8</%

Figure 5.1: Function call graph for Pin-0.2.5 simulation.

Figure 5.2: Pre-collision Figure 5.3: Post-collision

80

5.2 Pin-0.3 2D circles with friction

Pin-0.3 is a 2-dimensional collision simulation for circular bodies with friction. It is geared toward
a system of 1 ball and 10 pins, but is extensible to n bodies. The mechanics stem from Chapter 3
of [7]. The code organization is identical to that of Pin-0.2 (see Figure 5.1). 2 major changes have
been made to the code to incorporate friction during collisions.

5.2.1 Expanded state vector

The state vector consists of 6n elements:

velocity =





ẋ1
ẏ1
...
ẋn
ẏn




(5.14)

position =





x1
y1
...
xn
yn




(5.15)

angularvelocity =




θ̇1
...
θ̇n



 (5.16)

angle =




θ1
...
θn



 (5.17)

y =





velocity
position

angularvelocity
angle



 (5.18)

5.2.2 Collision handling

Knowns

After transforming the velocities of the 2 colliding bodies into a coordinate system with n̂1 along
the common normal and n̂2 along the common tangent, the following quantities are known:

Table 5.1: Notation and meaning of known quantities prior to impact

V0 initial velocity of C
V �
0 initial velocity of C �

M mass of B
M � mass of B’
e∗ energetic coefficient of restitution

81

And the following parameters are computed from knowns:

m =
MM �

M +M � (5.19)

β1 = 1 +
mr23
Mk̂2r

+
mr�23
M �k̂�2r

(5.20)

β2 =
mr1r3

Mk̂2r
+

mr�1r
�
3

M �k̂�2r
(5.21)

β3 = 1 +
mr21
Mk̂2r

+
mr�21
M �k̂�2r

(5.22)

For collinear impacts, β2 = 1 and β3 = 0.

Intermediate calculations

v(0) = (V̂0 + ω0 × r)− (V̂�
0 + ω�

0 × r�) (5.23)

ŝ = sign(v1(0)) (5.24)

Impulse at peak compression for collinear impact:

pc =
−v3(0)m

µβ2ŝ+ β3
(5.25)

= −v3(0)m (5.26)

Impulse at onset of stick:

ps =
v1(0)m

µβ1ŝ+ β2
(5.27)

Impulse at separation for collinear impact:

p∗f = pc(1 + e∗) (5.28)

Final impulse:

pf =






�
−ŝµp∗f 0 p∗f

�
ps > p∗f�

−ŝµps 0 p∗f

�
ps < p∗f

(5.29)

In the case ps < p∗f , ps is used in the tangential component because no impulse is imparted after
stick in the former direction of slip.

Results

The final impulse is used to compute the post-collision velocities and angular velocities:

V̂pf = V̂0 +
pf

M
(5.30)

V̂�
pf = V̂�

0 +
p�
f

M � (5.31)

ωpf = ω0 +
r× pf

Mk̂2r
(5.32)

ω�
pf = ω�

0 +
r� × p�

f

M �k̂�2r
(5.33)

where p�
f = −pf and r� = −r.

82

5.2.3 Collision handling code

function [y2] = postimpactv(y,ie,e,m)

% i is prime in Stronge’s notation

% j is unprime

% using 1 normal, 2 tangential (left), and 3 up

% in contrast to Stronge’s 3 normal, 1 tangential (right), 2 down

global r kr

format compact

mu = 0.1;

[i j] = findij(ie,y)

n = size(y,2);

meff = m(i)*m(j)/(m(i)+m(j));

vi = [y(2*i-1) y(2*i) 0]

vj = [y(2*j-1) y(2*j) 0]

wi = [0 0 y(n*4/6+i)]

wj = [0 0 y(n*4/6+j)]

ri = [r(i) 0 0]

rj = [-r(j) 0 0]

vci = vi + cross(wi,ri)

vcj = vj + cross(wj,rj)

v0 = vcj - vci

shat = sign(v0(2))

beta(1) = 1 + meff*r(j)^2/m(j)/kr(j)^2 + meff*r(i)^2/m(i)/kr(i)^2

beta(2) = 0; % for collinear collisions

beta(3) = 1; % for collinear collisions

% pc = -v0(1)*meff/(mu*beta(2)*shat+beta(3))

pc = -v0(1)*meff

ps = -v0(2)*meff/(mu*beta(1)*shat+beta(2))

pfstar = pc*(1+e)

if ps>pfstar

pf = [pfstar shat*mu*pfstar 0]

else

pf = [pfstar shat*mu*ps 0]

end

83

vi2 = vi - 1/m(i)*pf

vj2 = vj + 1/m(j)*pf

wi2 = wi - 1/m(i)/kr(i)^2 * cross(ri,pf)

wj2 = wj + 1/m(j)/kr(j)^2 * cross(rj,pf)

KEi0 = 1/2*m(i)*dot(vi,vi) + 1/2*m(i)*kr(i)^2*dot(wi,wi)

KEj0 = 1/2*m(j)*dot(vj,vj) + 1/2*m(j)*kr(j)^2*dot(wj,wj)

KEif = 1/2*m(i)*dot(vi2,vi2) + 1/2*m(i)*kr(i)^2*dot(wi2,wi2)

KEjf = 1/2*m(j)*dot(vj2,vj2) + 1/2*m(j)*kr(j)^2*dot(wj2,wj2)

dKE = KEjf + KEif - KEj0 - KEi0

if dKE>0, error(’~~~--- Kinetic energy increased!? ---~~~’), end

y2 = y;

y2([2*i-1 2*i]) = vi2(1:2);

y2([2*j-1 2*j]) = vj2(1:2);

y2(n*4/6+i) = wi2(3);

y2(n*4/6+j) = wj2(3);

format loose

84

5.2.4 Pinfall by position and entry angle experiment

64 simulations were run to test the relationship between pinfall and position and entry angle from
y = 0.35, 0.375, 0.4, . . . , 0.525m from the right gutter and ψ = 0, 1, 2, . . . , 7◦. Pinfall was totalled as
the number of pins that deviated from their initial positions. The pins unmoved were also noted.

All the data

0.3250.350.3750.40.4250.450.4750.50.5250.55

0

1

2

3

4

5

6

7

6

7

7

10

8

8

8

8

9

9

9

9

9

10

10

10

10

9

10

10

10

10

10

10

10

9

9

9

9

8

9

8

8

8

8

7

10

9

9

9

10

9

10

10

10

10

10

10

10

9

9

10

10

10

10

10

10

10

9

9

8

8

7

6

Position (m)

An
gl

e
(d

eg
)

Figure 5.4: Pins felled by position and entry angle. 0.3574 m is glancing the right side of the 1 pin,
0.4425 m is ”flush”, and 0.5271 m is the middle of the 1 pin. Each square represents 1 data point.

Pins by position or by angle

Future improvements

• Use a 3D model

• Increase the resolution of angles and positions

• Refine the definition of position
For this experiment initial position was defined as

�
l − rball − rpin y

�
. It may be better to

couple the x and y positions to account for the curvature of the ball and pins. As stated

85

0.350.3750.40.4250.450.4750.50.525
7.5

7.75

8

8.25

8.5

8.75

9

9.25

9.5

9.75

10

Position (m)

Pi
ns

 fe
lle

d

Figure 5.5: Pins felled by position.

0 1 2 3 4 5 6 7
8.5

8.75

9

9.25

9.5

Entry angle (deg)

Pi
ns

 fe
lle

d

Figure 5.6: Pins felled by entry angle.

before, y = 0.3574m is a glancing blow and y = 0.5271m is a head-on impact, but these y
values correspond to different x values (l and l − rball − rpin, respectively.)

86

5.3 Pin-0.4 3D frictionless spheres

87

5.4 Pin-0.6 2 identical spheres

Simulates the collision of 2 identical spheres. The spheres can have any initial speed, position,
and angular velocity.
State vector is organized / structured as follows:

function x = unpackstate(state)

x = [state.x state.y state.z ...

state.xdot state.ydot state.zdot ...

state.wx state.wy state.wz];

5.4.1 Collision processing

function xNew = collision(x)

theta = findtheta(x)

xTheta = transformcoordinates(x, 2,theta);

phi = findphi(xTheta)

xThetaPhi = transformcoordinates(xTheta,1,phi);

xNewThetaPhi = computevelocity(xThetaPhi);

xNewTheta = transformcoordinates(xNewThetaPhi,1,-phi);

xNew = transformcoordinates(xNewTheta, 2,-theta);

5.4.2 Velocity computation

function xNew = computevelocity(x)

global M R KR MU ESTAR

state = packstate(x);

% 1 is prime

% 2 is unprime

VHat = [state.xdot(2) state.ydot(2) state.zdot(2)]

VHatPrime = [state.xdot(1) state.ydot(1) state.zdot(1)]

omega = [state.wx(2) state.wy(2) state.wz(2)]

omegaPrime = [state.wx(1) state.wy(1) state.wz(1)]

r = [0 0 -R]

rPrime = [0 0 R]

V = VHat + cross(omega, r)

VPrime = VHatPrime + cross(omegaPrime, rPrime)

v = V - VPrime

alpha = 2/M + R^2 / (M*KR^2);

88

mInv = diag([alpha alpha 1])

pc = -M/2*v(3)

s = sqrt(v(1)^2 + v(2)^2)

ps = s / (MU * mInv(1,1))

pf = pc * (1 + ESTAR)

phi = atan(v(2) / v(1))

if isnan(phi), phi = 0, end

p = [-MU*cos(phi)*min(ps,pf) -MU*sin(phi)*min(ps,pf) pf]

pPrime = -p

VHatFinal = VHat + p/M

VHatPrimeFinal = VHatPrime - p/M

omegaFinal = omega + cross(r,p)

omegaPrimeFinal = omegaPrime + cross(rPrime,pPrime)

% Form post-collision state

newstate = state;

newstate.xdot = [VHatPrimeFinal(1) VHatFinal(1)];

newstate.ydot = [VHatPrimeFinal(2) VHatFinal(2)];

newstate.zdot = [VHatPrimeFinal(3) VHatFinal(3)];

newstate.wx = [omegaPrimeFinal(1) omegaFinal(1)];

newstate.wy = [omegaPrimeFinal(2) omegaFinal(2)];

newstate.wz = [omegaPrimeFinal(3) omegaFinal(3)];

xNew = unpackstate(newstate);

% Kinetic energy

KEinitial = 1/2*M*norm(VHat)^2 + ...

1/2*M*norm(VHatPrime)^2 + ...

1/2*M*KR^2*norm(omega)^2 + ...

1/2*M*KR^2*norm(omegaPrime)^2

KEfinal = 1/2*M*norm(VHatFinal)^2 + ...

1/2*M*norm(VHatPrimeFinal)^2 + ...

1/2*M*KR^2*norm(omegaFinal)^2 + ...

1/2*M*KR^2*norm(omegaPrimeFinal)^2

89

