

Abstract

The effect of hydrolysis temperature (40 to 80°C), pH (4 to 8), time (1 to 9 h) and enzyme activity ([E]/[S] values of 1.73%, 3.47%, 5.20%, 8.67%, and 13.8%) on the concentration of glutamic and aspartic acids in seed protein extracted from defatted tomato seed meal (DTSM) was investigated and optimized using the Response Surface Methodology. The optimum conditions to produce maximum concentration of amino acids were the temperature - 40°C; pH - 3; time - 6 h; and enzyme activity - 0.1822 U/g. The corresponding concentrations of glutamic acid and aspartic acid were 727.6 µg/mL and 149.9 µg/mL, respectively. The results showed that the protein extracted from DTSM is rich in amino acids and could be used as an ingredient in food products rich in umami flavors for both vegetarians and non-vegetarians.

Introduction

About 3 to 5% (in weight) of fresh tomato is generated as pomace containing about 60% of seeds and 40% of peels from tomato processing industries. Tomato pomace is currently used as livestock feed and soil amendment or otherwise disposed into landfill that causes environmental problem. Tomato seed contains lysine rich seed protein and has cholesterollowering effect, which shows the potential application as protein supplement. Chemical extraction methods used for protein extraction have limitations as they may induce sidereactions, such as hydrolysis and extraction of non-protein components, and denaturation of protein, which affect functional properties of protein. Enzymatic hydrolysis (EH) was used in this study because of milder process condition, easier control of reaction and minimal secondary products formation which helps to improve functional properties of protein. Response surface methodology was used to optimize the EH conditions for maximizing concentration of glutamic and aspartic amino acids in protein extracted from DTSM.

Objectives

- 1) To study the effect of hydrolysis temperature (T), pH, time (t) and enzyme activity [E]/ [S] on the concentration of glutamic and aspartic acids in protein extracted from DTSM.
- 2) To optimize the hydrolysis conditions to maximize glutamic and aspartic amino acids in protein by using Response Surface Methodology technique.

Materials and Methods

Preparation of DTSM

Tomato pomace of hot break process (The Morning Star Company, Williams, CA) was collected and stored in freezer until use. It was thawed at 4°C and then dried at 50°C in an oven to a moisture content of $5.0 \pm 0.2\%$. The seeds were separated from the dried pomace samples using an aspirator system. 70 g seeds were ground to powder using a mill for 30 s and sieved in a Tyler Sieve Shaker with a 14 mesh sieve. The powder was defatted with the hexane (10mL/g meal) for 4 h. The DTSM was packed in ziplock bags after removing residual hexane.

Papain: Papain for enzymatic hydrolysis was obtained from Carica papaya with 1.937 U/ mg (U refers to amount of protease needed to hydrolysis 1 µmol casein in 1 min).

Single Factor Experiments

Effect of enzyme activity: [E]/[S] values were at 1.73%, 3.47%, 5.20%, 8.67%, and 13.8%, while keeping T - 50°C, t - 3h and pH - 5.5 as constant

Effect of pH: pH values were at 4, 5, 6, 7, and 8, while keeping T - 50°C, t - 3 h and [E]/[S] - 5.20% as constant.

Effect of temperature (T): Temperatures were at 40°C, 50°C, 60°C, 70°C, and 80°C, while keeping t - 3h, pH - 5.5 and [E]/[S] - 5.20% as constant.

Effect of time (t): times were at 1, 3, 5, 7, and 9 h, while keeping T - 50°C, pH - 5.5 and [E]/[S] - 5.20% constant.

Effect of Enzymatic Hydrolysis on Nutritional Value of Protein Extracted From Tomato Seed Yin Zhang^{1,2}, Chandrasekar Venkitasamy², Zhongli Pan^{2,3}, Haile Ma^{4,5}, Yunliang Li⁴

¹ Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China; ² Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; ³ Healthy Processed Foods Research Unit, USDA-ARS-WRRC, 800 Buchanan St., Albany, CA 94710, USA; ⁴School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; ⁵Jiangsu Provincial Research Center of Bio-process and Separation Engineering of Agri-products, Zhenjiang, Jiangsu 212013, China

Hydrolysis of DTSM

A sample of 2 g of DTSM was extracted with 20 mL of phosphate buffer, composed of 0.2 mol/L Na₂HPO₄ and 0.1 mol/L citric acid at different hydrolysis conditions in a reciprocal water bath shaker (Model R 76, New Brunswick Scientific, Edison, N. J., U.S.A.). At the end of hydrolysis the mixture was heated in boiling water for 20 min to inactivate the protease.

Determination of total free amino acids

The hydrolysate sample was precipitated with 10% sulfosalicyclic acid for 2 h and then centrifuged at 11,000g for 15 min. The pH of supernatant was adjusted to 2.0, and passed through a microfiltration membrane (0.45 µm). After precolumn derivatizing with phthalic dicarboxaldehyde (OPA), the filtrate was subjected RP-HPLC to determine the free amino acid compositions. Triplicate experiments were performed. **Response Surface experimental design**

Based on the single factor tests, a series of experiments were conducted using the Response Surface Methodology (RSM) to optimize the hydrolysis conditions. The non-coded values of four independent variables by Central Composite (Uniform Precision) Rotatable design are shown in Table 1,

Results

Figure 1(a) shows the particle size distribution of DTSM determined through sieve analysis. Large proportion of DTSM were in the particle size range of 0.85 mm ~ 0.43 mm followed by 0.43 mm ~ 0.25 mm size. Figure 1(b) shows the effect of particle size on the protein extraction ratio of DTSM. The DTSM with particle size of less than 0.25 mm did not have significant effect on the extraction ratio of protein. However, the extraction ratio of protein significantly decreased with the increase in particle size when DTSM with particle sizes of > 0.25 mm was hydrolysed.

Fig.1. (a) Particle size distribution of DTSM and (b) Effect of particle size on protein extraction of DTSM

The effect of hydrolysis conditions ([E]/[S], pH, T and t) on the concentrations of glutamic and aspartic amino acids in protein extracted from DTSM is shown in Figure 2. From the results of single factor experiments, ([E]/[S] values between 5.20%~13.88%; pH values of 4, 5 and 6; temperatures of 40°C, 50°C and 60°C; and time period of 3 h, 4 h and 5 h were selected for optimization using RSM technique.

Fig.2. Effect of hydrolysis conditions a) enzyme activity ([E]/[S], b) pH, c) temperature (T) and d) time (t) on concentrations of glutamic and aspartic amino acids in protein extracted from DTSM

Materials and Methods (continued)

Results (continued)													
Tabl	e 1. C	entra	l comp	osite 1	2. ANOVA of response surface								
ex	perin	nenta	design	and	results			expe	rimen	tal r	esults	5	
RUN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	X1: Enzyma activity (U/g) 5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20	e X2: pH 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6	X 3: Temperature (°C) 50 50 70 70 50 50 50 70 70 50 50 70 70 50 50 70 70 50 50 70 70 60 60 60 60 60 60 60 60 60 6	$ \begin{array}{c} X4: & 1 \text{ int} \\ (h) & 3 \\ 5 & 4 \\ 4 & 4 \\ 5 & 6 \\ 6 & 6 \\ 6 & 6 & 4 \\ 6 & 6 & 4 \\ 6 & 6 & 4 \\ 6 & 6 & 4 \\ 6 & 6 & 4 \\ 6 & 6 & 4 \\ 6 & 6 & 4 \\ 6 & 6 & 4 \\ 6 & 6 & 4 \\ 6 & 6 & 4 \\ 6 & 6 & 4 \\ 6 & 6 & 4 \\ 6 & 6 & 4 \\ 6 & 6 & 4 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \\ 6 & 6 & 6 $	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Y2: CAA 46.00 \pm 1.64 53.99 \pm 8.42 47.79 \pm 0.68 62.89 \pm 5.27 44.79 \pm 4.79 29.16 \pm 1.64 42.11 \pm 3.26 40.34 \pm 4.40 80.56 \pm 2.32 96.30 \pm 24.79 80.16 \pm 8.95 76.96 \pm 2.83 49.40 \pm 4.12 37.62 \pm 1.38 43.38 \pm 12.31 39.47 \pm 1.77 33.91 \pm 2.10 69.77 \pm 1.01 62.05 \pm 5.68 38.11 \pm 0.24 43.13 \pm 1.53 43.60 \pm 2.76 48.12 \pm 1.09 46.64 \pm 8.00 64.69 \pm 7.68 54.35 \pm 4.16 45.12 \pm 1.89 49.69 \pm 1.58 48.71 \pm 2.62 43.48 \pm 1.24 51.98 \pm 4.51	Master Source X1 X2 X3 X4 X1*X1 X1*X2 X1*X3 X1*X4 X2*X2 X2*X3 X2*X4 X3*X3 X3*X4 X4*X4 Model (Linear) (Quadratic) (Cross Product) Error (Lack of fit) (Pure Error) Total R ²	ANOVA for Y10 DF MS 1 89244.23 1 93793.76 1 1263.676 1 1016.732 1 171.4396 1 21903.26 1 499.4108 1 110.723 1 129.4588 1 100.9523 1 1359.95 1 2106.452 1 1112.056 1 15.77449 14 212907.1 4 185318.4 4 2502.344 6 25086.35 16 10347.57 10 8962.632 6 1384.94 30 223254.7 0.9638	F Pr 137.9945 0.1 145.0292 0.1 1.953967 0. 1.572128 0.1 0.26509 0.1 33.86806 0.1 0.772217 0.1 0.171206 0.1 0.171206 0.1 0.156098 0.1 2.102831 0.1 3.257115 0.1 0.719523 0.1 0.024391 0.1 71.63744 0.1 0.967317 0.4 3.882896 0.1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ANOVA for Y1 (DF MS 1811.344 2953.933 0.59535 0.00735 42.41874 754.0516 116.1006 4.8841 17.30616 11.18903 295.1524 23.20393 6.125625 0.303057 4 6042.819 - 4765.879 89.43648 1187.503 6 1012.329 0 714.794 297.5354 0 0 7055.148	F 28.62853 46.6873 0.00941 0.000116 0.670434 11.91789 1.834986 0.077194 0.273526 0.176844 4.664923 0.366741 0.096816 0.00479 6.821969 18.83134 0.353389 3.128108 1.44143	Pr> F 0.0001 0.923929 0.991534 0.424929 0.003278 0.194361 0.784695 0.608143 0.679693 0.046306 0.55328 0.759701 0.945681 0.000239 0.0001 0.837891 0.339159
	Y1	.)	700- 5- 200-	A1	700 5 18 100	A contraction of the second se	2	700- 5- 0-	A3	-18			
Y2) $f(x) = \frac{12}{9} \int_{B_1}^{12} \int_{B_2}^{12} \int_{B_2}^{12} \int_{B_2}^{12} \int_{B_3}^{12} \int_{B_3}^$													
Y1: (Concet 700 600 500 (Tm) 400 200 100	ntratic Deter 1 3 5 7 Fig.4	on of glu mined Ca 9 11 13 15 R Verific	tamic lculated 17 19 21 2 un ation	Relative error	22: Con 40 20 - 20 20 (%) 0 40 (%) 1 40 (%	centrati	on of a termined	Calculated -	C aci Relati	d ve error 27 29 31	40 20 -20 -20 -40 -40 -40 -60 -80 -100	
CGA: concentration of glutamic acid, CAA: concentration of aspartic acid. Determined values are from Table 2, Calculated values are obtained using the fitting model.													
					Co	onclus	sion						
The results showed that the particle sizes of the DTSM were distributed in a wide range 0.15 to 1.4 mm) with majority of particles in the range of 0.85 mm ~ 0.43 mm, followed by 0.43 mm ~ 0.25 mm. The maximum protein extraction ratio of 85.64% was obtained when the DTSM with particle sizes of ≤ 0.25 mm was hydrolyzed by papain for 5 h. The results of the response surface optimization showed that the optimal													

hydrolysis condition for preparing the protein with highest concentration of glutamic acid and aspartic acid were enzyme activity of 0.1822 U/g; pH of 3; hydrolysis temperature of 40°C; and hydrolysis time of 6 h. The corresponding concentrations of the glutamic acid and aspartic acid obtained were 727.6 µg/mL and 149.9 µg/mL, respectively.

Contact: Zhongli Pan, Ph.D. Healthy Processed Foods Research Unit, Western Regional Research Center USDA-ARS, Albany, CA, USA, zhongli.pan@ars.usda.edu