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Models for chemical reaction kinetics typically assume well-mixed conditions, in

which chemical compositions change in time but are uniform in space. In contrast,

many biological and microfluidic systems of interest involve non-uniform flows

where gradients in flow velocity dynamically alter the effective reaction volume.

Here, we present a theoretical framework for characterizing multi-step reactions that

occur when an enzyme or enzymatic substrate is released from a flat solid surface into

a linear shear flow. Similarity solutions are developed for situations where the

reactions are sufficiently slow compared to a convective time scale, allowing a

regular perturbation approach to be employed. For the specific case of Michaelis-

Menten reactions, we establish that the transversally averaged concentration of

product scales with the distance x downstream as x5/3. We generalize the analysis to

n-step reactions, and we discuss the implications for designing new microfluidic

kinetic assays to probe the effect of flow on biochemical processes. VC 2012 American
Institute of Physics. [doi:10.1063/1.3679950]

I. INTRODUCTION

Many biochemical processes involve the interplay of diffusion, reaction, and flow. In some

cases, the flow is uniform and simply advects well mixed materials from one location to

another. Most biological and microfluidic systems of interest, however, do not involve uniform

flows; instead, gradients in flow velocity play an active role by stretching fluid elements and

increasing the effective area over which diffusion and reaction occur.1 For example, high shear

rates cause stretching of von Willibrand factor, which facilitates platelet aggregation2 or enzy-

matic cleavage3 for blood clotting. Moreover, flow in the circulatory system exerts shear stress

on red blood cells and the surrounding endothelial cells, both of which can respond by releasing

chemicals.4,5 In turn, these chemicals either act as vasodilatory signaling molecules6 or haemo-

static factors, which can rapidly modify the local microenvironment by diffusion and convec-

tion and induce corresponding biological reactions, mostly via enzymatic reactions.7 Other

examples of these kinds of effects are associated with drug release from patches, such as may

be used to induce blood clotting.8 In addition, flow in the developing embryo (embryogenesis)

is believed to determine the left-right body axis of a vertebrate by triggering intercellular sig-

naling via downstream transport processes.9 Flow can also be used to probe the kinetics of

DNA conformational changes10 or enzymatic kinetics.11,12 Since all of the chemical processes

mentioned here occur under specific flow conditions and the sites of chemical release or target-

ing are often fixed surfaces in the flow domain, with the chemical reactions often occurring in

bulk, the temporal and spatial distributions of the chemicals, and thus the associated enzymatic

kinetics, are linked directly to a shear flow.
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Despite the importance of this active interplay between flow, diffusion, and reaction, almost

all research to date have concerned single-step surface reactions (see for example Refs. 13 or

14), and little work is available to characterize nonlinear or multi-step reactions occurring

within the shear flow. Here, we present a theoretical framework for characterizing multi-step

reactions that occur when an enzyme or enzymatic substrate is released from a flat solid surface

into a linear shear flow (Fig. 1). Similarity solutions are developed for situations where the

reactions are sufficiently slow compared to a convective time scale, allowing a regular perturba-

tion approach to be employed. For the specific case of Michaelis-Menten reactions, we establish

that the transversally averaged concentration of product scales with the distance x downstream

as x5/3. We generalize the analysis to n-step reactions, and we discuss the implications for

designing new microfluidic kinetic assays to probe the effect of flow on biochemical processes.

II. THEORY

A. Michaelis-Menten kinetics

One important class of problems in chemistry and biology concerns enzymatic reactions,

which most often have nonlinear kinetics and involve the interplay of two or more chemicals.15

The most familiar case is Michaelis-Menten kinetics,16 where the binding of a substrate (S) to

an enzyme (E) first produces an intermediate (E�S) that then gives the enzyme back and yields

a product (P)

Eþ S ��!
k1

k�1

E � S �!k2
Eþ P: (1)

For the flow systems of interest here, we restrict attention to situations where the fluid velocity

and inlet concentrations and boundary conditions are all invariant in time. In this limit, we

have governing equations for each chemical species of the form

u � rci ¼ Dir2ci þ fiðfcjgÞ; (2)

where u is the velocity field, Di is the diffusivity of species i, and fi({cj}) denotes the rate of

production or consumption of species i, which in general can depend on all of the concentra-

tions of other species in a nonlinear fashion.

In systems with smallest dimension h on the order of magnitude 10–100 microns, under typical

microfluidic flow conditions, the Péclet number Pe � uh=D� 1; for typical speeds u¼ 10 cm/s,

shear rates _c ¼ 103 � 104s�1 are common.17,18 Because the Péclet number is large, the standard

boundary layer approximation applies, i.e., the x-direction (flow-direction) derivatives in the Lapla-

cian are negligible compared to the y-direction (transverse) derivatives.19 Then, in the case of a

shear flow u ¼ _cy in the x-direction (Fig. 1), the steady-state transport equations simplify for the

specific case of Michaelis-Menten kinetics to

FIG. 1. Definition sketch for an enzymatic reaction in a linear shear flow. Here S denotes the substrate, E denotes the

enzyme, Ei indicates the initial enzyme concentration flowing in from the left, and Si the substrate concentration at the sur-

face to the right of x¼ 0.
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_cy
@½S�
@x
¼ DS

@2½S�
@y2
� k1½S�½E� þ k�1½E � S�; (3a)

_cy
@½E�
@x
¼ DE

@2½E�
@y2

� k1½S�½E� þ ðk�1 þ k2Þ½E � S�; (3b)

_cy
@½E � S�
@x

¼ DE�S
@2½E � S�
@y2

þ k1½S�½E� � ðk�1 þ k2Þ½E � S�; (3c)

_cy
@½P�
@x
¼ DP

@2½P�
@y2
þ k2½E � S�: (3d)

Note that Eqs. (3a)–(3d) are similar to the usual kinetic equations in that the left-hand side

plays the role of the time derivative. The presence of the diffusive terms on the right-hand side,

however, complicate matters considerably since diffusion limits the rate at which the overall

chemical reaction occurs. This latter diffusive effect is ordinarily not considered since the typi-

cal bench-scale laboratory reactor is assumed well mixed; here, we focus on a parallel laminar

flow design in which diffusion controls the volume where both substrate and enzyme are

located.

To complete the problem statement, boundary conditions must be specified. Two important

classes of boundary conditions are (1) release of a substrate from a localized part of a surface

into a stream containing enzyme and (2) the inverse situation where enzyme is released into a

stream containing substrate. In both situations, the effective reaction volume depends on the

extent to which the enzyme or substrate diffuses into the shear flow; outside of this region, the

reaction rate is zero since only one of the two reactants is present. A solution via matched as-

ymptotic expansions is available for the case where the enzyme and intermediate diffusivities

are identically zero,20 but because Eqs. (3a)–(3d) are coupled and nonlinear, for the fully gen-

eral case, one must resort to numerical methods.

Recasting the governing equations in dimensionless terms, however, aids identification of

limiting cases where approximate analytical solutions are possible. We focus here on the case

where substrate diffuses from the surface into the bulk where enzyme is present (Fig. 1).

Choosing ‘D �
ffiffiffiffiffiffiffiffiffiffiffi
DS= _c

p
as a characteristic convective-diffusive length scale, we let

X � xffiffiffiffiffiffiffiffiffiffiffi
DS= _c

p ; Y � yffiffiffiffiffiffiffiffiffiffiffi
DS= _c

p ; (4)

S � ½S�½S�i
; E � ½E�½S�i

; E � S ½E � S�½S�i
; P � ½P�½S�i

;

where the subscript i denotes the inlet concentration. The governing equations then become

Y
@S

@X
¼ @2S

@Y2
� e1SEþ e�1E � S; (5a)

Y
@E

@X
¼ dE

@2E

@Y2
� e1SEþ ðe�1 þ e2ÞE � S; (5b)

Y
@E � S
@X

¼ dES
@2E � S
@Y2

þ e1SE� ðe�1 þ e2ÞE � S; (5c)

Y
@P

@X
¼ dP

@2P

@Y2
þ e2E � S: (5d)

Here, we have defined the dimensionless parameters
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e1 �
k1½S�i

_c
; e�1 �

k�1

_c
; e2 �

k2

_c
; (6)

and di is the diffusivity of species i normalized by the substrate diffusivity.

B. Similarity solution

Examination of characteristic magnitudes for the dimensionless groups motivates an analyt-

ical approximation. Enzyme and substrate concentrations are typically on the order of millimo-

lar at most, while rate constants vary tremendously depending on the reaction but usually are in

the range 101 to 107 M�1 s�1. Since shear rates on the order of _c ¼ 104s�1 are common in

microfluidic flows, the inequality

e1 ¼
k1½S�i

_c
� 1 (7)

is satisfied easily. This dimensionless group, which is often referred to as a Dahmköhler number,

gauges the relative speeds of the reaction and convection. Likewise, �-1 and �2 are expected to be

small, but the analysis here requires that they be no larger than O(1). When the reaction speed is suf-

ficiently small (i.e., the inequality in Eq. (7) is valid) and assuming there is negligible intermediate

present in the inlet, then the substrate concentration evolves approximately according to

Y
@S

@X
¼ @2S

@Y2
: (8)

Importantly, in this limit, the substrate concentration is completely decoupled from the enzyme

concentration and S follows the classical (Lévêque) similarity solution.19 Substitution of the

similarity variable

g � Y

ð3XÞ1=3
; (9)

and application of the boundary conditions

S ¼ 1; g ¼ 0; (10a)

S! 0; g!1; (10b)

yields the solution

SðgÞ ¼

ð1
g

e�s3=3ds

ð1
0

e�s3=3ds

¼
C

1

3
;
g3

3

� �

C
1

3

� � � WðgÞ; (11)

where C denotes the Gamma function. It is straightforward to evaluate the above integrals

numerically. Note that because all reaction terms have been neglected, W(g) represents the max-

imum possible concentration of the substrate for a given velocity field and substrate diffusivity;

inclusion of reaction terms will decrease the concentration at any given location because the

substrate is consumed. As for the other species, if we assume that enzyme is not consumed at

the solid surface and that no intermediate or product is present at any boundaries, then in the

same limit of no reaction, the concentrations are simply

E ¼ ½E�i½S�i
� Ei; E � S ¼ 0; P ¼ 0; (12)

for all space.
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With known concentration fields in the limit of no reaction, we now develop a perturbation

solution for finite but small reaction rates, i.e., for 0 < e1 � 1. For common microfluidic or

physiological situations where there is excess of enzyme, we take E�Ei, and neglecting back

reactions, which is a good approximation when the concentration of the intermediate is small,

then the intermediate and product concentrations [cf. Eqs. (5c) and (5d)] evolve according to

Y
@E � S
@X

¼ dE�S
@2E � S
@Y2

þ e1EiWðgÞ; (13a)

Y
@P

@X
¼ dP

@2P

@Y2
þ e2E � S: (13b)

We again substitute the similarity variable, and if we let

E � S � e1Eið3XÞ2=3UðgÞ; (14a)

P � e1e2Eið3XÞ4=3!ðgÞ; (14b)

then we obtain the system of ordinary differential equations

dE�SU
00 þ gðgU0 � 2UÞ þW ¼ 0; (15a)

dP!00 þ gðg!0 � 4!Þ þ U ¼ 0; (15b)

where the primes denote differentiation with respect to g. As for boundary conditions, we

require that there be zero flux of intermediate and product into the solid surface and that their

concentrations vanish far from the surface, viz.,

U0 ¼ 0; !0 ¼ 0; g ¼ 0; (16a)

U! 0; !! 0; g!1: (16b)

The numerical solutions to Eqs. (15a) and (15b) are plotted in Fig. 2(a) for the case of equal

diffusivities (dE�S¼ dP¼ 1). Both W and ! are maximum at the solid surface (g¼ 0) and then

decay to zero far away (g ! 1). This result is physically intuitive, since the product concen-

trations are highest where the reactant concentration is largest, i.e., near the surface. An exam-

ple of the effect of unequal diffusivities is shown in Fig. 2(b). Since enzymes are typically

much larger than the substrate, while the product is of comparable size to the substrate, we

FIG. 2. The similarity solutions for the various concentration fields for (A) equal diffusivities and (B) unequal diffusivities.
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choose dE�S¼ 0.1 and dP¼ 1 as representative diffusivities. The primary effects of a smaller in-

termediate diffusivity are that the concentration of intermediate and product are both noticeably

increased near the solid surface while decaying more rapidly with distance. The decreased dif-

fusivity tends to “confine” any formed intermediate near the solid surface.

A perhaps more intuitive visualization of the similarity solution is shown in Fig. 3, which

shows contour plots of the scaled concentration fields in X-Y space. The substrate concentration

follows the standard Lévêque behavior: the concentration is uniform along the surface for X> 0

and decays into the bulk, with a sharp discontinuity at X¼ 0. In contrast, the concentration of

the intermediate and product both increase with X, albeit at different rates; consistent with the

reaction scheme, the intermediate forms earlier (i.e., at smaller values of X). For this specific

FIG. 3. Contour plots of the dimensionless concentration fields for the case dE�S¼ 0.1, dP¼ 1.
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example, the intermediate diffusivity is smaller, and accordingly, the intermediate penetrates a

smaller distance into the bulk flow.

In many experimental situations where concentrations are indicated by fluorescence21–24 or

photoluminescence,25–27 it is common to measure the light emitted from the projected area

rather than individual points. In this case, a convenient measure of the effective concentration

is obtained by integrating the concentration in the y-direction to arrive at the area-averaged con-

centration, which varies in the x-direction, i.e.,

hE � Si �
ð1

0

½E � S�dy ¼ e1‘D½E�ið3XÞ
ð1

0

WðgÞdg: (17)

Note that an extra factor of (3X)1/3 results from the change of variables. Likewise, for the prod-

uct we have

hPi �
ð1

0

½P�dY ¼ e1e2‘D½E�ið3XÞ5=3

ð1
0

!ðgÞdg; (18)

or, in fully dimensional terms,

hE � Si ¼ ad
k1½S�i½E�i

_c
x; (19a)

hPi ¼ bd
k1k2½S�i½E�i
D

1=3
S _c5=3

x5=3: (19b)

Here, ad and bd are dimensionless constants defined as

ad � 3

ð1
0

WðgÞdg; bd � 35=3

ð1
0

!ðgÞdg; (20)

which depend only on the relative magnitudes of the species diffusivities. Numerical quadrature

of the similarity solutions shows that both ad and bd depend very weakly on the species

FIG. 4. Magnitude of the prefactor ad as a function of dES and magnitude of the prefactor bd as a function of dP for three

different values of dES; cf. Eq. (20).
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diffusivities, ranging at most between approximately 0.5 to 9 over five orders of magnitude in

the relative diffusivities (Fig. 4).

C. Generalization to n-step reactions

The preceding similarity scheme can be generalized to multi-step reactions with an arbi-

trary number of intermediate species, i.e., reactions of the form

Eþ S �!k1
I1 �!

k2
I2 � � � �!

kn�1
In�1 �!

kn
P: (21)

Here, Ij represents the jth intermediate species and all rate coefficients kj are first order with the

exception of k1. For simplicity, we omit any back reactions. Note that the previous Michaelis-

Menten scheme is recovered by letting n¼ 2 and identifying I1 as E�S. We again restrict atten-

tion to situations where the Péclet number is large and where all reaction time scales are slow

compared to the convective time scale, i.e., kj= _c � 1 for all j. Likewise, we restrict attention to

the initial region where back reactions are negligible and where either the enzyme (or substrate)

is in great excess. When these criteria are met, the perturbation scheme is simply repeated n
times, and it is straightforward to demonstrate that substitution of the similarity variables

Ij � e1e2 � � � ejEið3XÞ2j=3UjðgÞ; (22a)

P � e1e2 � � � enEið3XÞ2n=3!ðgÞ; (22b)

yields a system of coupled ordinary differential equations of the form

dI1
U001 þ gðgU01 � 2U1Þ þW ¼ 0; (23a)

dIj
U00j þ gðgU0j � 2jUjÞ þ Uj�1 ¼ 0; (23b)

dP!00 þ gðg!0 � 2n!Þ þ Un�1 ¼ 0: (23c)

Equation (23b) is valid for j	 2. As before, the solutions depend only on the relative magni-

tudes of the species diffusivities and are readily solved numerically. Perhaps of most interest is

the scaling prediction for the integrated concentration, which for the product is

Ph i ¼ cd
k1k2 � � � kn½S�i½E�i

D
n�1

3

S _c
2nþ1

3

x
2nþ1

3 : (24)

where cd is a prefactor defined in a fashion similar to bd [cf. Eq. (20)].

III. DISCUSSION AND CONCLUSIONS

One of the key results of this analysis is Eq. (19b), which predicts that the transversally

averaged concentration of product resulting from a Michaelis-Menten reaction will increase with

distance downstream as x5/3. Provided the reaction rate is sufficiently slow and the shear rate suf-

ficiently high (so that Eq. (7) is satisfied), information about either the rate constants or the reac-

tant concentrations could be extracted from measurements of the product concentration as a

function of distance along a channel. A similar methodology has been employed for co-flow

microfluidic networks where reactants are brought together in two converging channels,25,28 but

the present results provide a method for assessing situations where a reactant is released from a

solid surface. Equation (19b) also predicts that the projected product concentration is highly sen-

sitive to the imposed shear rate, i.e.,hPi / _c�5=3. For situations where it is inconvenient to probe

multiple positions along a microchannel, an alternative approach would be to measure the prod-

uct concentration at a fixed location while varying the imposed flow rate.
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An especially intriguing possibility involves multi-step reactions where the exact number of

intermediate species is unknown. Notably, the generalization of the similarity solution to an n-

step reaction indicates that the product concentration is extremely sensitive to n (cf. Eq. (24)).

As an example, for a three-step reaction, the product concentration increases as x7/3, while for a

four-step reaction, it increases as x3. The significant difference in the power law suggests that

the number of steps in an unknown reaction mechanism could be probed by measuring the prod-

uct concentration versus position (or alternatively, versus different flow rates for fixed position).

The similarity solution presented here is valid in the limit of “slow” kinetics with negligi-

ble back reactions, so more detailed numerical calculations are necessary to describe systems

with faster kinetics or significant back reactions. Likewise, the similarity solution also assumes

a linear shear flow, whereas in many pressure-driven microfluidic situations, the flow is para-

bolic. More detailed calculations are necessary if the effective reaction zone extends signifi-

cantly past the region of linear shear near the solid surface, or if the substrate is released within

the entrance region of a microchannel where the linear shear profile is not fully developed.

Moreover, in many biological situations of interest, the amount of reactant released at a liquid/

cell interface actually depends on the imposed shear rate.5 The solution presented here will

serve as a limiting case for consideration of these more complicated effects.
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