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Electrohydrodynamic (EHD) flow around a charged spherical colloid near an elec-
trode was studied theoretically and experimentally to understand the nature of long-
range particle–particle attraction near electrodes. Numerical computations for finite
double-layer thicknesses confirmed the validity of an asymptotic methodology for
thin layers. Then the electric potential around the particle was computed analytically
in the limit of zero Péclet number and thin double layers for oscillatory electric
fields at frequencies where Faradaic reactions are negligible. Streamfunctions for the
steady component of the EHD flow were determined with an electro-osmotic slip
boundary condition on the electrode surface. Accordingly, it was established how the
axisymmetric flow along the electrode is related to the dipole coefficient of the colloidal
particle. Under certain conditions, the flow is directed toward the particle and decays as
r−4, in accord with observations of long-range particle aggregation. To test the theory,
particle-tracking experiments were performed with fluorescent 300 nm particles around
50 µm particles over a wide range of electric field strengths and frequencies. Treating
the particle surface conductivity as a fitting parameter yields velocities in excellent
agreement with the theoretical predictions. The observed frequency dependence,
however, differs from the model predictions, suggesting that the effect of convection
on the charge distribution is not negligible as assumed in the zero Péclet number limit.

1. Introduction
Every electrokinetic process involves field-induced motion. In capillary electro-

phoresis, particle motion is a combination of translation, owing to the particle
charge, and electro-osmotic flow, arising from charge on the capillary wall (Russel,
Saville & Schowalter 1991). Electric fields are also involved in the separation of DNA
and other macromolecules (Dai et al. 2003; Tegenfeldt et al. 2004) and in position-
ing particles or biological cells (Stone, Stroock & Ajdari 2004; Bhatt, Gregio &
Velev 2005). Charged particles immobilized in microfluidic networks can be used
for pumping or mixing (Squires & Bazant 2004). Recent work in microfluidics has
focused attention on the manipulation of fluids and particles at small length scales
(Stone & Kim 2001; Whitesides & Stroock 2001; Bazant & Squires 2004). A major
outstanding issue concerns the details of the flow around particles near an electrode
inasmuch as such flows are involved in electrohydrodynamic (EHD) particle assembly
processes. The current work establishes a theoretical model for these flows.

Although isolated particles have received considerable attention, there has been
little study of particle behaviour near electrodes, despite its many applications and
fascinating character. For example, particles widely dispersed across an electrode
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form planar crystalline aggregates in steady or oscillatory fields (Böhmer 1996; Trau,
Saville & Aksay 1996). Moreover, since the particles are electrostatically repulsive,
aggregation is unexpected given the presence of Coulombic and induced-dipole
repulsion. Nevertheless, particles migrate over extended distances (five to ten particle
radii) to create large planar structures that disintegrate when the field is removed.
The assembly of particles with electric fields is an example of ‘guided self-assembly,’
a subject of considerable technological promise (Whitesides & Grzybowski 2002).
Electric fields may be useful in guiding the self-assembly of photonic band-gap
materials (Joannopoulos 2001); biosensors (Velev & Kaler 1999) and lab-on-a-chip
(Gau et al. 1999) devices also benefit from electric-field patterning of colloids coated
with specific biological or catalytic molecules.

In their investigation of the field-induced layering of colloidal crystals, Trau et al.
(1996, 1997) put forward an EHD mechanism wherein distortions of the electric
field alter the body-force distribution in the electrode’s charge polarization layer. The
action of the applied field on this charge produces flow and, since the induced charge
and the electrical body force are each proportional to the applied voltage, the flow
scales on the square of the field strength. In an oscillatory field, the flow has a steady
component wherein nearby particles are mutually entrained and carried toward one
another. We studied EHD aggregation of this sort experimentally (Ristenpart et al.
2004) by modelling the particle’s effect as a perturbation of the electric field due
to a ‘point-dipole’. We found that aggregation rates scale on the (complex) dipole
coefficient and therefore decay inversely with frequency. According to our analysis,
motion is directed towards a test particle in typical circumstances, which is consistent
with the observed aggregation phenomena.

Thus, although it is now acknowledged that fluid motion plays a central role in
particle aggregation in electric fields (Trau et al. 1996; Sides 2001; Ristenpart et al.
2004), there is less agreement as to the details of the flow. Most authors simply refer
to the electric-field-induced flow as a source of ‘attraction’ (Gong & Marr 2001;
Gong, Wu & Marr 2002; Nadal et al. 2002). Some even explain aggregation in
thermodynamic terms (Zhang & Liu 2004).

The lack of consensus is partly because most studies focus on aggregation
(Solomentsev et al. 2000; Nadal et al. 2002; Ristenpart et al. 2004). Only two reports
recount observations of flow, and neither presents a comprehensive picture. Yeh,
Seul & Shraiman (1997) recount seeing tracers move in a ‘toroidal’ fashion near a
particle in an unspecified electric field; Nadal et al. (2002) noted tracer particle motion
in a ‘centripetal’ flow field around a larger particle. The paucity of experimental studies
is matched by a dearth of theoretical work.

The goal of the current work is to elucidate the nature of electric-field-induced flow
around a particle near an electrode with an oscillating potential; in the aggregation
process, particles are carried towards one another by the superposition of such flows.
The presentation is divided into two parts: a theoretical study and an experimental
corroboration of the theory.

The theoretical analysis is, necessarily, incomplete. The governing equations for the
standard electrokinetic model for flow around a particle near an electrode with the
customary boundary conditions (i.e. specified potential and current on the electrodes)
are, in principle, readily soluble using standard numerical techniques. Unfortunately,
difficulties with a purely numerical approach arise from disparities between the
Debye length, κ−1, the particle radius, a, and the particle–electrode separation, h.
Because κa � 1, the numerical problem is ‘stiff’ and computational limitations thwart
resolution.
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Analytical approaches are also difficult, and even a linearized version of the standard
electrokinetic model yields a complicated set of coupled partial differential equations
with no known analytical solution. When κa � 1, however, it is appropriate to analyse
the limiting case where free charge is negligible throughout most of the domain
of interest and this offers an opportunity to use asymptotic methods. Accordingly,
the electric field can be described by solutions to Laplace’s equation and transport
processes near the particle surface represented with an adaptation of Bikerman’s
model for surface transport to provide boundary conditions (Bikerman 1939; O’Brien
1986).

Another complication arises when specifying boundary conditions on the electrode
in the limit of thin double layers. Specification of a constant potential along the
electrode, as used in previous analyses of electrophoretic processes near electrodes
(Morrison & Stukel 1970; Reed & Morrison 1976), omits the presence of tangential
potential gradients in the outer part of the polarization layer that give rise to
EHD flow. Perturbation methods using current conservation boundary conditions
(Gonzalez et al. 2000; Squires & Bazant 2004) require more than the lowest-order
terms to capture lateral variations in charge and field in and near the diffuse region.

Numerical work (§ 3) demonstrates, however, that the situation near the electrode is
simplified in the appropriate limits. Even in the presence of a particle, the electric field
strength near the electrode underneath a particle approaches a laterally uniform state
(i.e. E · n ≈ constant) as the Debye length decreases, provided the particle is not too
close to the electrode. Use of a constant-field-strength boundary condition provides
a route to analytical solutions for both the electric field and the EHD flow. These
describe the structure of the flow around a single particle for large values of κa where
numerical solutions are infeasible, making comparison with the experimental results
straightforward.

The experimental work involves particle-tracking velocimetry which, despite com-
plications due to particle size, yields extensive quantitative information. In electrically
driven assemblies, one is concerned with flows near, say, 100 nm particles, but the
details of such flows are too small to be imaged by optical microscopy. Accordingly,
EHD flow was traced near a large (∼50 µm) sphere using small (∼300 nm) fluorescent
particles. The agreement between theory and experiment shows that the EHD model
is appropriate and can be applied in order to understand processes with smaller
particles, when viewed in the proper dimensionless context.

The paper is organized as follows. First, in § 2, the potential between parallel
electrodes is studied in the framework of the standard electrokinetic model. The
model indicates that the field strength outside the polarization layers approaches a
constant value at the appropriate frequencies. In § 3, the effects of a particle near
an electrode are explored numerically for modest size values of κa using a finite-
element scheme. Although the particle distorts the electric field strength near the
electrode beneath the particle, the calculations indicate that as κ−1 → 0 (i.e.
as the thickness of the polarization layer becomes infinitesimal), the field strength in
the gap at the edge of the polarization layer becomes progressively more uniform. A
constant field strength condition makes analytical solutions feasible.

An analytical solution for the electric potential with the constant-field-strength
boundary condition is presented in § 4. With the thin-double-layer approximation,
Laplace’s equation governs the potential and it can be solved by separation of variables
in bispherical coordinates. This shows that surface transport along the particle surface
(which determines the particle dipole coefficient) has a pronounced effect on the
electric potential and the consequent fluid flow.
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The solution for the electric potential is used in § 5 to work out the axisymmetric
streamfunction for flow around a particle near an electrode. Under typical conditions,
an EHD flow is directed inward toward a ‘test’ particle and decays as r−4.

Experimental information about the EHD flow around a particle near an elec-
trode is presented in § 6. Submicrometre fluorescent tracer particles were tracked
around a single (large) particle over a range of applied potentials and frequencies.
Measurements of the tracer velocities agree with the analytical theory when the
particle surface conductivity is used as a fitting parameter. The paper concludes in § 7
with a summary of the theoretical and experimental results.

2. The electric potential between parallel electrodes
2.1. The electrokinetic model

The theory is based on the standard electrokinetic model as set out by Russel et al.
(1991). Thus, fluid motion is described by the Stokes equations for low-Reynolds-
number flows with an additional body force due to the presence of free charge.
Ion motion is a combination of diffusion, electromigration and convection while
electrostatic potential and charge are related by the Gauss equation. Here we focus
on 1-1 electrolytes with ions of equal mobilities (in water at 298 K, the diffusivities of
potassium and chloride ions differ by less than 5 %) and the field equations are:

0 = −∇P − e(n+ − n−)E + µ∇2u, (2.1)

∇ · u = 0, (2.2)

∂n±

∂t
= D∇2n± ± e

D

kBT
∇ · (n±∇φ) − u · ∇n±, (2.3)

εεo∇2φ = −e(n+ − n−). (2.4)

The symbols have their usual meanings: P , pressure; e, charge on a proton; n±,
number densities of ions with positive or negative valences; E, electric field strength;
µ, viscosity; u, velocity; D, ion diffusivity; kBT , the product of Boltzmann’s constant
and the absolute temperature; φ, electric potential; ε, dielectric constant of the liquid;
and ε0, permittivity of free space. Equation (2.1) represents the usual momentum
balance in the limit of negligible inertia, with an electric body force term. The number
densities of ions are related to the electric field through Gauss’s equation (2.4), and
also by the conservation relation expressed in (2.3). Here, we have employed the
Nernst–Planck equation to express the flux of ions; the three terms on the right-hand
side of (2.3) represent diffusion, electromigration and convection, respectively.

This is essentially the model studied for isolated spheres and binary electrolytes by
O’Brien & White (1978) and Delacey & White (1981). Their results were extended by
Mangelsdorf & White (1992) to include inertial effects at higher frequencies. However,
since those analyses rely on the symmetry of fields around an isolated sphere in a
uniform field, they are not readily applicable to a particle near a boundary. Here, we
use the model to investigate the situation between parallel electrodes and then for a
sphere near an electrode.

2.2. Oscillatory fields

Consider two parallel electrodes, separated by a distance 2H , with the centreline at
z = 0 and an oscillatory potential �φe−iωt applied on the electrode at z = −H while
the other is grounded. The velocity is zero everywhere and osmotic pressure balances
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the electrostatic body force. Although the flux of ions at each electrode depends on the
nature of the electrochemical reactions, the influence of Faradaic processes diminishes
as the frequency of the applied potential increases. If the electrodes are ‘perfectly
polarizable’, the flux of ions across the electrodes-electrolyte interface vanishes, i.e. at
z = ±H ,

0 = −D
dn±

dz
∓ eDn±

kBT

dφ

dz
. (2.5)

The assumption of perfect polarization specifically precludes consideration of flow
phenomena associated with the production of ions via Faradaic reactions (Sides 2001;
Fagan, Sides & Prieve 2002). Aggregation occurs at higher frequencies (∼1 kHz) where
Faradaic reactions are negligble, and the goal of this work is to identify the simplest
model that elucidates EHD flow in the presence of a nearby particle.

For �φ � kBT /e, Hollingsworth & Saville (2003) show that for a quiescent liquid,
the linearized model leads to

φ =
�φ

2

[
1 − sinh(γ z/H ) csch(γ ) − i(z/H )γ ν2 coth γ

1 − iγ ν2 coth γ

]
e−iωt . (2.6)

Here, γ is

γ 2 = (κH )2 − i
ωH 2

D
, (2.7)

ν2 is a dimensionless time scale,

ν2 =
ω

κ2D
, (2.8)

and the Debye length for a 1-1 electrolyte is

κ−1 =

√
εε0kBT

2e2n∞
; (2.9)

n∞ is the ion density in the bulk. Although the potential depends on oscillation
frequency in a complicated fashion, for frequencies in the range

κD/H � ω � κ2D, (2.10)

the expression simplifies considerably. At the conditions of interest here, these
frequencies are 102 and 107 Hz, and the field strength becomes

E ≈ �φ

2H

[(
1 + κH

(
κD

ωH

)2
cosh(κz)

sinh(κH )

)
− i

(
κD

ωH
− κ2D

ω

cosh(κz)

sinh(κH )

)]
e−iωt . (2.11)

Outside polarization layers near the electrodes (with characteristic length κ−1), the
field strength is spatially uniform, i.e.

E ≈ �φ

2H

(
1 − i

κD

ωH

)
e−iωt . (2.12)

Since κD/ωH � 1, the field strength is largely in-phase with the applied potential.
Inside the polarization layers, the electric field strength is much larger than �φ/2H

and, because of the motion of free charge, there is a large phase difference with the
imposed potential. Figure 1 depicts the real component of the electric field strength
and illustrates the transition from the polarization layer to the bulk. The charge
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Figure 1. The real part of the dimensionless electric field strength, E/(�φ/2H ), between
parallel electrodes with an oscillatory applied potential at different frequencies, at ωt = 2π.
−·− , ω = 5 kHz; – – –, ω = 2 kHz; ——, ω = 1 kHz. Note that for κ(H +z) � 1, E/(�φ/2H ) → 1.
Inset: the dimensionless potential φ/�φ across the cell for ω =1 kHz. The potential varies
linearly, except very close to z/H = ±1 (not discernible on the scale of this plot). κ−1 = 10 nm,
H =100 µm, D = 2 × 10−9 m2 s−1.

density at the edge of the polarization layer near the powered electrode is

q = εε0

∂φ

∂z

∣∣∣∣
z=−H

= εε0

�φ

2H

(
1 + i

κ2D

ω

)
e−iωt , (2.13)

for κD/H � ω � κ2D. As the expression indicates, the total charge density has an
appreciable phase lag and decays inversely with frequency. This decay is a consequence
of the finite mobility of ions; as the applied frequency increases, the ions have less
time to move in response to the field, and the total charge consequently decreases.

3. The electric potential near an electrode in the presence of a particle:
numerical solutions

3.1. Background

The potential distribution between parallel electrodes is straightforward because there
are only two length scales: the Debye length and the electrode separation. The pre-
sence of a particle complicates matters by introducing two additional scales: the
particle radius and the distance, h, between the electrode and particle surface. By
restricting attention to situations where H is large, i.e. H � a and H � h, the electrode
separation may be ignored. Then the domain can be treated as semi-infinite, with a
far-field condition equivalent to the uniform field in the absence of the particle. Here,
numerical methods are used to explore the region near the electrode underneath a
particle. The objective is to establish the extent to which the particle alters the structure
of the electrode polarization layer. The numerical studies show that, providing the
polarization layer is thin and the particle is well outside the layer, the particle ‘sees’
a uniform field strength along the electrode.
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Figure 2. Representative domain and mesh for the finite-element analysis. The numbers
identify regions where the boundary conditions are applied. To capture the steep potential
and charge gradient, the mesh density increases close to boundary 1. Note that the figure is
not to scale and the domain was truncated to fit boundary 3 into the diagram. The width of
the domain was chosen such that the influence of the particle was negligible at boundary 4;
typical domain widths ranged from 10 to 20 particle radii.

3.2. Numerical model

The linearized model, (2.1)–(2.4), was solved for a sphere near an electrode. For weak
flows, the equations for the potential and free charge are decoupled from the fluid
flow and the velocity field can be obtained after the potential and charge distributions
are calculated. Omitting convective contributions to the free charge distribution is
justified if the Péclet number based on a characteristic velocity, uo, is small (Squires &
Bazant 2004). According to our measurements (cf. § 6), the flow speed underneath a
50 µm test particle is ∼25 µms−1 and this makes auo/D � 1. In addition, convective
effects sweep charge toward the particle so as to even out perturbations caused by the
particle’s proximity to the electrode. Accordingly, we assume that convective effects
are unimportant.

It is useful to work with the equations in dimensionless form with the origin of
a polar cylindrical coordinate system centred on the electrode below the spherical
particle. Accordingly, the potentials are scaled on kBT /e, lengths on the particle
radius, and the dimensionless charge expressed as n̄ ≡ (n+ − n−)/n∞.

The boundary conditions are as follows (cf. figure 2). At the electrode (boundary 1)
the potential is uniform and the ion flux vanishes,

φ̄ = (e�φ/kBT ) exp(−iωt), 2
∂φ̄

∂z̄
+

∂n̄

∂z̄
= 0, z̄ = 0. (3.1)

At the left-hand edge of the domain (boundary 2), radial derivatives vanish,

∂φ̄

∂r̄
= 0,

∂n̄

∂r̄
= 0, r̄ = 0. (3.2)
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At the outer edge of the domain (boundary 4), the potential and charge density
asymptote to constant values so

∂φ̄

∂r̄
= 0,

∂n̄

∂r̄
= 0, r̄ = r̄max � 10. (3.3)

At the cell mid-plane (boundary 3),

n̄ = 0, φ̄ = 0, z̄ = H/2a, (3.4)

since H is much larger than the particle size and the perturbation induced by the
particle becomes negligible.

On the particle (boundary 5), the conditions are subtler. In the context of the
linearized model, the charge flux vanishes,

2∇φ̄ · n + ∇n̄ · n = 0, (3.5)

and the electric displacement is continuous,

ε∇φ̄ · n − εp∇φ̄p · n = 0. (3.6)

Note that there is no bound charge in the latter expression because the oscillatory
part of the bound charge vanishes. By restricting attention to situations where ε � εp ,
these boundary conditions reduce to

∇φ̄ · n = 0, ∇n̄ · n = 0. (3.7)

In the linearized model, the effects of electro-osmosis on charge transport inside
the Debye layer are absent since the Péclet number vanishes. Effects due to particle
charge and the attendant transport processes in the diffuse layer can be taken into
account in an ad hoc fashion, however. A thin diffuse layer near a particle surface with
a non-zero charge concentration gives rise to both a higher ionic conductivity and
electro-osmotic flow. By extending the work of O’Konski (1960) and Dukhin & Shilov
(1980), O’Brien (1986) showed that both effects can be captured under the rubric of
‘surface conduction’. Thus, a current balance applied to a slab-shaped control volume
on the particle surface yields the boundary condition

(Ke − iεε0ω)∇φ · n − (Kp − iεpε0ω)∇φp · n = −Ks∇2
sφ, r = a, (3.8)

where Ke and Kp are the ionic conductivities of the fluid and particle, respectively, Ks

is the particle ‘surface conductivity’, and ∇s denotes the surface Laplacian. The terms
on the left-hand side of the equation represent the normal current flux into the surface
layer, while the term on the right-hand side represents the tangential current along the
particle surface. The surface conductivity, Ks , depends on the Debye thickness and
the amount of free charge in the double layer (or, equivalently, the surface potential)
as embodied in, e.g. the Bikerman equation (Bikerman 1939),

Ks =
Ke

κ

(
exp

∣∣∣∣ eζp

2kBT

∣∣∣∣ − 1

)
(1 + 3MD). (3.9)

Here, ζp is the particle surface potential and MD = 2εε0(kBT )2/(3µe2D) is the
dimensionless ionic drag coefficient.

Accordingly, with εp � ε,

∇φ̄ · n = −λ∇2
s φ̄, ∇n̄ · n = 0. (3.10)

Here, λ≡ Ks/(Ke − iεε0ω) is the complex dimensionless surface conductivity and, with
λ=0, (3.10) describes behaviour without surface conduction.
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(a) (b) (c)

Figure 3. Relative magnitudes of the vertical component of the electric field strength
calculated with the finite-element scheme (arbitrary colour scales) and the linearized model.
(a) κ−1 = 100 nm; (b) κ−1 = 33 nm; (c) κ−1 = 20 nm. Parameters: a = 500 nm, H = 200 µm,
h = 150 nm, λ= 0, ω = 1 kHz, D = 2 × 10−9 m2 s−1.

3.3. Numerical methodology

Numerical calculations were carried out in Femlab version 3.0a (Comsol Software),
using the direct (UMFPACK) stationary linear solver with the ‘weak’ solution form
(for details, refer to chap. 6 of The Femlab User’s Guide, Version 3.0). Complex-valued
equations were divided into a system of two equations and solved independently. To
check the accuracy of the methodology, four problems with known analytical solutions
were solved: the dipole field around an isolated dielectric particle in an external field
(Jackson 1975); the dipole field around an isolated particle with a surface conductivity
(O’Brien 1986); the hydrodynamic mobility of a sphere moving toward a planar
wall (Brenner 1961); and the coupled charge and electric potential between parallel
electrodes (Hollingsworth & Saville 2003). Excellent agreement between the analytical
solutions and the numerical results was readily obtained with relatively coarse meshes
in the first three problems.

The accuracy of the numerical solution of the fourth problem (coupled charge
and potential) is sensitive to the mesh parameters owing to the steep gradient at an
electrode surface. Quite small elements were needed to obtain accurate results. To
address this issue and deal with computer memory limitations, a variable mesh-size
scheme was used wherein the size increased upon moving away from the electrode.
However, even with a variable mesh, the large memory requirement limited the size of
the domain analysed and restricted the numerical studies to situations where κa < 30.

3.4. Numerical results

We focus here on frequencies ω � κD/H , such that far from the particle, the field
strength outside of the polarization layer is approximately �φ/2H . The main con-
clusions in the following discussion also apply to lower frequencies, but the magnitude
of the field strength at the edge of the polarization layer is correspondingly lower
(cf. § 2.2).

As expected, unless the Debye layer thickness is small, the particle distorts the
electric field strength along the electrode; figure 3 shows relative magnitudes of the
electric field for different values of a/κ−1. The distortion decays quickly as a/κ−1

increases. In addition, the non-uniformity is localized underneath the particle and
becomes negligible for r/a > 2. For Debye lengths such as those employed in the
experimental work the distortion should be relatively minor.



92 W. D. Ristenpart, I. A. Aksay and D. A. Saville

r/a r/a

R
e(

E
z/

E
zo )

0 1 2 3 40 1 2 3 4
1.0

1.2

1.4

1.6

1.8

2.0

2.2

0

0.2

0.4

0.6

0.8

1.0(a) (b)

Figure 4. Numerical computations of the real part of the vertical electric field strength along
the electrode (z = 0), normalized on the field strength in the absence of the particle, as a
function of radial position. (a) A particle with zero surface conductivity. · · · , κa = 5, κh = 1.5;
− · −, κa =10, κh = 3; − − −, κa = 15, κh = 4.5; ——, κa = 25, κh = 7.5. (b) A particle with a
high surface conductivity corresponding to ζp = −200 mV. · · · , κa = 10, κh = 3; − · −, κa = 15,
κh = 4.5; − − −, κa = 20, κh = 6; ——, κa = 25, κh = 7.5. The dimensionless surface conductivi-
ties are, respectively, λ= 4.13 + 3.25i, 3.97 +1.39i, 3.21 + 0.63i, and 2.63 + 0.33i. Parameters:
h/a = 0.3, ω = 1 kHz, εp = 0, D = 2 × 10−9 m2 s−1.

A more quantitative comparison is presented in figure 4, which depicts the
(numerically calculated) ratios of the field strengths at the electrode with and without
the particle for different values of κa. For an uncharged particle (with zero surface
conductivity) the electric field decreases beneath the particle (figure 4a). For a highly
charged particle (high surface conductivity), the electric field strength increases under
the particle (figure 4b). However, as the results demonstrate, the influence of the
particle diminishes as a/κ−1 increases. For even smaller Debye lengths, e.g. a/κ−1 � 50,
the distortion should be insignificant; in our experimental work a/κ−1 ≈ 5000.

These results can be understood in terms of the dipole coefficient of an isolated
particle. For an isolated particle with εp � ε, the dipole coefficient is

Co =
2λ − 1

2λ + 2
. (3.11)

Thus, for low-conductivity particles (λ< 1/2), the dipole coefficient is negative and
the dipole field is oriented in the direction opposite to the applied field. For highly
conducting particles (λ> 1/2) the dipole coefficient is positive, and the dipole field is
aligned with the applied field. For λ= 1/2, the particle is effectively ‘transparent’ and
the electric field is unaffected by the particle. Thus, when the particle is in the vicinity
of an electrode, the dipole field of the particle ‘competes’ with the electric field just
outside the electrode polarization layer. If the particle dipole coefficient is negative,
the dipole field decreases the field strength underneath the particle. When the particle
dipole coefficient is positive, the dipole field augments the field under the particle.

As indicated in figures 3 and 4, the magnitude of the distortion diminishes as the
Debye length decreases. Decreasing the Debye thickness has two effects: (i) the polar-
ization layer recedes from the particle; and (ii) the field strength in the polarization
layer increases while the dipole field remains roughly constant. Both effects decrease
the distortion due to the particle, showing that the field at the edge of the polarization
layer becomes uniform as κ−1 → 0. Accordingly, the particle ‘sees’ a uniform field
above the nearby electrode and this can be used as an asymptotic boundary condition
for thin polarization layers, thereby facilitating analytical treatment. This matter will
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Figure 5. Definition sketch for the bispherical coordinate system.

be revisited in § 5 in connection with a comparison between flow fields calculated
numerically with the full model and with the asymptotic boundary conditions.

4. The electric potential around a particle with a thin-double layer
4.1. Thin-double-layer formulation

When the Debye length is small compared to the particle size (κa � 1), polarization
layers are thin and, since κa ∼ 5000 in the experiments to which the theory will
be applied, this restriction is readily satisfied. When the free charge density is zero
everywhere in the domain, the equation for the potential reduces to Laplace’s equation,

∇2φ = 0. (4.1)

The boundary conditions for the problem are as follows. First, the influence of the
particle decays at large distances so

φ → −E∞z, z → ∞, (4.2)

where, for oscillatory fields, E∞ follows from (2.12). On the particle surface, the
current balance (cf. § 3.2) relates the normal and tangential derivatives of the electric
potential,

ε∗∇φ · n − ε∗
p∇φp · n = −Ks∇2

sφ, r = a. (4.3)

On the electrode surface, the electric field strength is uniform along the edge of the
infinitesimally thin polarization layer, cf. § 3, so

∇φ · n = −E∞, z = 0. (4.4)

4.2. Bispherical coordinates and the particle position

The bispherical coordinate system (Moon & Spencer 1988) is the natural choice to
describe the domain since the boundary conditions (on the electrode and particle
surface) correspond to coordinate surfaces (figure 5). Bispherical coordinates are
related to Cartesian coordinates by the formulae

x =
c sinψ cos θ

cosh η − cosψ
, (4.5a)
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y =
c sin ψ sin θ

cosh η − cos ψ
, (4.5b)

z =
c sinh η

cosh η − cosψ
, (4.5c)

c =
√

h2 − a2, (4.5d)

−∞ � η � ∞, 0 � ψ � π, 0 � θ � 2π. (4.5e)

Here surfaces of constant η are spheres, with radius c|cosech η| centred at h = c coth η.
An infinitely large sphere corresponds to η =0, the plane between the two spheres.
The particle surface corresponds to η = ηs , so c = a sinh ηs , and h = a cosh ηs . Surfaces
of constant ψ are ‘lemon’ shaped for ψ > π/2 and ‘apple’ shaped for ψ < π/2. The
vertical and radial vectors are related by

er =
cosψ cosh η − 1

cosh η − cos ψ
eψ − sin ψ sinh η

cosh η − cos ψ
eη, (4.6)

ez = − sinψ sinh η

cosh η − cosψ
eψ +

1 − cosψ cosh η

cosh η − cos ψ
eη. (4.7)

The bispherical parameter c follows from the particle height above the electrode.
In bispherical coordinates,

∇2
sφ =

(cosh η − cos ψ)2

c2 sinψ

∂

∂ψ

(
sinψ

∂φ

∂ψ

)
. (4.8)

Since εp � ε for typical systems (e.g. polystyrene or silica in water),

∂φ

∂η
= λ

(cosh η − cosψ)

sinh η sinψ

∂

∂ψ

(
sinψ

∂φ

∂ψ

)
, η = ηs, (4.9)

where λ is the dimensionless (complex) conductivity introduced earlier, cf. (3.10).
The solution to Laplace’s equation in bispherical coordinates that satisfies the

far-field boundary condition is (Moon & Spencer 1988)

φ = −z+sinh ηs(cosh η − ξ )1/2

∞∑
n=0

(An cosh(n+1/2)η+Bn sinh(n+1/2)η)Pn(ξ ), (4.10)

with φ and z scaled with aE∞ and a, respectively, Pn is the Legendre polynomial
of degree n, and ξ ≡ cos ψ . The constant field strength boundary condition at η = 0
requires

Bn = 0. (4.11)

To determine the An coefficients, we follow Morrison & Stukel (1970) and use the
orthogonality relations for Legendre polynomials in integral form. The result is a
ninth-order recursion relation; truncation of the infinite series at m = Ntot yields a
matrix equation of the form

(Mη − λMψ ) · A = Iη − λIψ, (4.12)

where A = {A0, A1, A2, . . . , ANtot
} is the desired vector of coefficients. The vectors Iη

and Iψ stem from integration of the normal and surface derivatives, respectively, of
the unperturbed electric field (the first term in (4.10)). Likewise, the elements of the
heptadiagonal matrix Mη and the nonadiagonal matrix Mψ result from integration of
the normal and surface derivatives of the perturbed electric field (the second term in
(4.10)). All four are lengthy expressions involving m and ηs , but the Am coefficients
are readily calculated by standard numerical methods (Ristenpart 2005).
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Figure 6. The electric potential around a particle near an electrode subject to a uniform field
strength at time t = n/2πω. The particle is located at h/a = 0.1. (a) λ= 0, equivalent dipole
strength C0 = −0.5. On the electrode surface, the potential decreases radially. (b) λ= 1.34 +
0.03i, equivalent dipole strength C0 = 0.36 + 0.01i. On the electrode surface, the potential
increases radially.

4.3. Results for the potential

The M matrices and I vectors were tabulated with Mathematica and (4.12) was solved
with the LinearSolve function. Complex-valued equations were divided into a system
of two equations and solved independently. For the work discussed here, the series
converged for values of Ntot between 50 and 600, depending on the value of ηs . The
results were confirmed independently by a finite-element approach (Femlab).

Figure 6 shows representative results. For a particle with zero surface conductivity,
the equipotential lines are similar to those for an isolated insulating particle,
although the presence of the electrode clearly distorts the field (figure 6a). Notably,
the condition of constant field strength on the electrode results in a non-uniform
potential underneath the particle. For a particle with low or zero surface conductivity,
the gradient in potential along the electrode is directed away from the particle. For
particles with a higher surface conductivity (figure 6b), the situation is reversed
and the equipotential lines are similar to those for an isolated conducting particle.
Underneath the particle, the potential gradient is directed toward the particle.

5. Fluid flow around a particle
5.1. Formulation and streamfunctions

Since inertial effects are negligible and free charge is confined to thin regions near
solid surfaces, the momentum balance and continuity equation are

0 = −∇P + ∇2u, ∇ · u = 0. (5.1)

For boundary conditions, we first specify that the velocity normal to every solid
surface is zero,

u · n = 0, r = a, z = 0. (5.2)

For the tangential velocities, we employ the standard electro-osmotic slip condition.
As discussed by Squires & Bazant (2004), a perturbation expansion of the standard
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model near a conducting surface yields the velocity components

ut = −εε0φEt

µ
(1 − e−κz) + O

(
1

κ�

)
, uz = O

(
1

κ�

)
. (5.3)

Here, φ and Et are the potential and tangential electric field induced by the applied
field at the outer edge of the diffuse layer, z is the coordinate in the direction normal
to a surface, and � is a characteristic length. (For convenience the reference state
for the potential may be shifted such that the potential is zero at the electrode, so
that φ in (5.3) is equivalent to the potential drop across the charged layer.) Thus,
to leading order, the normal velocity is zero and the slip velocity is as given by the
Smoluchowski equation. To relate the velocity to the surface potential gradient and
the charge in a polarization layer, we use Gauss’ law to obtain

ut =
εε0φEt

µ
=

qEt

µκ
; (5.4)

q denotes the free charge density. In general, the charge on the particle or electrode
is composed of two terms: ‘equilibrium’ charge present in the absence of a field, and
charge induced by the applied field, namely,

q(t) = qeq + qind(t). (5.5)

Since the applied field varies as cos ωt , the flow resulting from the equilibrium charge
simply oscillates as cosωt . Flow resulting from the induced charge, however, oscillates
as cos2 ωt = (1+cos 2ωt)/2, and thus has both a ‘steady’ component and a component
that fluctuates at twice the imposed frequency. Focusing on the steady (rectified) part
of the velocity field enables us to omit the flow arising from the action of the
oscillatory field on fixed charges.

Charge is induced on both the particle surface and the electrode, but the following
argument shows that slip velocity on the electrode dominates. On the electrode, the
induced charge is (cf. § 2.2)

q ∼ εε0E∞(1 + iκ2D/ω)e−iωt , (5.6)

and the induced charge along the particle surface is, from Gauss’ law and (3.8),

q ∼ εε0E∞λa∇2
sφe−iωt . (5.7)

To estimate the tangential electric field on the electrode, the point dipole estimate
Et ∼ C0E∞ evaluated at r ∼ a and h ∼ 0 can be used. On the particle surface, the
surface Laplacian is ∇2

sφ ∼ E∞/a so Et ∼ E∞. These estimates indicate that the velocity
induced on the particle surface is negligible compared to that along the electrode if

C0(1 + iκ2D/ω) � λ. (5.8)

Inasmuch as C0 ∼ (2λ − 1)/(2λ + 2) and κ2D � ω, this restriction is easily satisfied.
Thus, on the particle surface we specify

u · t = 0, r = a. (5.9)

We emphasize that (5.6) is an approximation for the charge density because, similar
to the constant-field strength boundary condition employed previously, it neglects
the presence of the particle. To be strictly consistent in the context of the constant
field strength condition (4.4), one might consider employing Gauss’ law to obtain a
charge density that is without the second term in (5.6). For frequencies ω � κ2D, this
approach neglects the dominant term, however, and the resulting flow predictions are
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inconsistent with the numerical solution to the complete electrokinetic model. As we
shall see, use of (5.6) for the charge density yields excellent agreement (cf. figure 8).

The axisymmetric nature of the problem allows us to employ a streamfunction, Ψ ,
defined by

uη =
(cosh η − cosψ)2

c2 sinψ

∂Ψ

∂ψ
, (5.10)

uψ = − (cosh η − cos ψ)2

c2 sinψ

∂Ψ

∂η
. (5.11)

The general solution of Stokes’ equations in bispherical coordinates is (Stimson &
Jeffery 1926)

Ψ = (cosh η − cos ψ)−3/2

∞∑
n=1

Wn(η)G−1/2
n+1 (cosψ), (5.12)

where

Wn(η) = an cosh[(n − 1/2)η] + bn sinh[(n − 1/2)η] + cn cosh[(n + 3/2)η]

+ dn sinh[(n + 3/2)η], (5.13)

and G
−1/2
n+1 (cosψ) is the Gegenbauer polynomial of order n+1 and degree −1/2, given

by

G
−1/2
n+1 (cosψ) =

Pn−1(cos ψ) − Pn+1(cos ψ)

2n + 1
. (5.14)

It now remains to use the boundary conditions on the particle and electrode surfaces
to determine the unknown coefficients. The condition of no normal flow at the
electrode and particle surfaces indicates that Ψ = 0 at both η = 0 and η = ηs , yielding

an = −cn, (5.15)

and

an cosh[(n − 1/2)ηs] + bn sinh[(n − 1/2)ηs]

+ cn cosh[(n + 3/2)ηs] + dn sinh[(n + 3/2)ηs] = 0. (5.16)

Since the slip velocity along the particle surface is negligible,

ut = 0 → ∂Ψ

∂η
= 0, η = ηs, (5.17)

which yields

an(n − 1/2) sinh[(n − 1/2)ηs] + bn(n − 1/2) cosh[(n − 1/2)ηs]

+ cn(n + 3/2) sinh[(n + 3/2)ηs] + dn(n + 3/2) cosh[(n + 3/2)ηs] = 0. (5.18)

To specify the charge induced on the electrode, we combine (2.12) and (5.6), which
imply that the perturbation caused by the particle is negligible compared to the
influence of the applied field, as confirmed numerically in the limit as κ−1 → 0 (cf. § 3).
The electro-osmotic slip velocity along the electrode (at η = 0 ) is thus

(cosh η − cos ψ)2

c2 sinψ

∂Ψ

∂ψ
=

εε0E∞

µκ

(
1 + i

κ2D

ω

)
(cosh η − cos ψ)

c

∂φ

∂ψ
, (5.19)
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where the dimensionless potential φ is specified by the solution obtained in the
previous section. Defining the scaling factor

Ψ → εε0c
2E2

∞
µκ

Ψ, (5.20)

and noting that the streamfunction is zero on the electrode yields

∞∑
n=1

dWn

dη
G

−1/2
n+1 (ξ ) = (1 − ξ 2)(1 − ξ )1/2

(
1 + i

κ2D

ω

)
∂φ

∂ξ
, (5.21)

where ξ ≡ cosψ . Integrating over ξ , and making use of orthogonality relations (5.15),
(5.16) and (5.18) yields a matrix expression of the form

MΨ · b = Iφ. (5.22)

Here, b = {b1, b2, . . . , bNtot−2} is the desired vector of coefficients, the mth element of
the vector Iφ is defined by

Iφ(m) = −Am−2

m(m − 1)

2(2m − 1)
+ Am−1

m(m − 1)

(2m − 1)
+ Am

2m2 + 2m − 1

(2m − 1)(2m + 3)

− Am+1

(m + 1)(m + 2)

(2m + 3)
+ Am+2

(m + 1)(m + 2)

2(2m + 3)
, (5.23)

and the bidiagonal matrix MΨ is defined by the expressions

MΨ (m−1) = −m−3/2

2m−1
− m+1/2

2m−1

(
2m−3− (2m−1) cosh 2ηs +2 cosh[−(2m−1)ηs]

2m+1− (2m−1) cosh 2ηs −2 cosh[−(2m−1)ηs]

)
,

MΨ (m +1) =
m +1/2

2m + 3
+

m + 5/2

2m + 3

(
2m +1 − (2m + 3) cosh 2ηs + 2 cosh[(2m + 3)ηs]

2m +5 − (2m + 3) cosh 2ηs − 2 cosh[(2m + 3)ηs]

)
.

(5.24)

Note that the Am coefficients are those obtained from (4.12), and the infinite series
was truncated at m =Ntot − 2.

5.2. EHD flow in oscillatory fields

Equation (5.22) was solved using a procedure similar to that described for (4.12), i.e.
the LinearSolve function in Mathematica and independent corroboration in Femlab.
Representative EHD streamlines are presented in figure 7 for a particle located at
h/a = 0.1. The flow structure is toroidal, with the recirculation centred under the
particle edge (z/a ∼ 0.25). The velocity increases rapidly underneath the particle,
before rapidly changing direction and moving away from the particle.

The direction of the flow depends on the particle surface conductivity. For particles
with low surface conductivity (cf. figure 10) the flow along the electrode is directed
toward the particle. This result is expected from consideration of the potential
gradients presented in figure 6. For an uncharged particle at time t = n/2πω, the
potential decreases radially along the electrode. The radial electric field Er = −∇rφ

is thus directed away from the particle. At t = n/2πω, the ions near the electrode
are negatively charged, and thus the radial electric field exerts a body force directed
toward the particle. Although the electric field and charge distribution oscillate in
time, the steady component of the body force remains oriented toward the particle.
For highly conducting particles, the potential gradient is reversed and flow is directed
away from the particle.
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Figure 7. Streamlines for EHD flow. The flow direction is clockwise for C ′
o < 0 and

counterclockwise for C ′
o > 0. The particle height is h/a = 0.1.

For comparison, numerical solutions of the Stokes equations with an electric body
force (2.1) were carried out. Here the electric body force was extracted from the
numerical solutions for the potential and charge density discussed in § 4. No-slip
conditions were applied on the electrode and particle surfaces, while a symmetry
condition was employed along the left-hand vertical boundary (near the particle).
Either a no-slip or a symmetry boundary condition was applied along the right-hand-
side vertical boundary; the different conditions yielded little difference in the fluid
velocity near the particle, provided the domain width was sufficiently large.

A representative plot of the radial EHD velocity along the particle centreline is
shown in figure 8 for an uncharged particle with κa = 20. Flow is directed radially
inward far from the particle surface (negative velocities), while close to the surface
the recirculating fluid is directed radially outward (positive velocities). The key result
is that the velocities obtained with the full numerical solution with a constant
potential boundary condition (cf. § 3) are in excellent agreement with the asymptotic
solution. The qualitative aspects of the flow around the particle calculated by either
method are the same; for κa > 20, the streamlines around the particle (outside of
the polarization layer) calculated numerically are almost indistinguishable from those
calculated analytically. Although the magnitudes of the velocities differ, the difference
decreases as κa increases. A simple extrapolation of the ratio between the ‘exact’
numerical solution and the approximate analytical solution indicates that the ratio
rapidly approaches unity as κa increases (figure 8, inset). That the numerically
calculated velocities approach those of the thin-double-layer model further supports
the use of the constant-field-strength boundary condition.

Besides the electric field conditions, two other parameters affect the EHD velocity:
the particle height above the electrode and the surface conductivity. As the particle
moves closer to the electrode, the magnitude of the EHD velocity increases
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Figure 8. Comparison of radial velocities calculated numerically and analytically. �, numeri-
cal solution with a volumetric body force; ——, analytical solution with slip conditions specified
at the boundaries. Velocities in µms−1, evaluated at z/a = 1.3; negative values indicate the flow
is directed radially inward toward the particle. Particle located at h/a = 0.3, and κ−1 = 20 nm.
Inset: ratio of the analytically calculated velocity to the numerical one as a function of
Debye thickness, calculated at r/a = 2. � , computed value; ——, polynomial fit. As the
Debye thickness diminishes, the two calculations converge. ω = 1 kHz, E = 5 V cm−1, Ks = 0,
D = 2 × 10−9 m2 s−1.
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Figure 9. (a) Radial (dimensionless) EHD velocity–radial position relation at the particle
mid-plane for different particle–electrode separations. · · ·, h/a = 1; – – –, h/a =0.5; ——,
h/a = 0.01. Inset: The radial velocity at z/a = 0, r/a = 1 as a function of ηs . (b) Log–log
plot of the radial velocity–radial position for r/a > 5, evaluated at the same particle heights as
in (a). The flows decay as r−4 far from the particle, κ−1 = 10 nm, ω = 1 kHz, D = 2 × 10−9 m2 s−1.

dramatically (figure 9a). For particles far from the electrode, the velocity is effectively
zero, but it increases roughly linearly with ηs (exponentially as h/a). The velocity
diverges as the separation approaches zero, but in practice the particles are separated
from the electrode by colloidal forces (cf. § 6.2).

Far from the particle, the radial velocity decays as r−4 (figure 9b). This scaling
can be understood in terms of the reflection of a ‘phoretic’ flow off the electrode. As
opposed to forced flows that decay as r−1 (e.g. sedimentation), phoretic flows (e.g.
particle electrophoresis) are driven by the interaction of an external field on a surface
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Figure 10. Normalized radial EHD velocity as a function of the real component of the
normalized particle surface conductivity. Velocities calculated at a representative position
slightly above the particle (r/a = 4, z/a = 1.05) for a particle located at h/a = 0.05. The velocity
decreases as the surface conductivity increases, eventually changing direction above a critical
value. Inset: the same data plotted as a function of the real component of the dipole coefficient,
C0 = (2λ − 1)/(2λ + 2), demonstrating the roughly linear dependence. κ−1 = 10 nm, ω =1kHz,
D = 2 × 10−9 m2 s−1.

within the fluid (Anderson 1989). Phoretic flows are of shorter range, decaying as r−3.
To incorporate the effect of an adjacent wall, one can use the method of reflections
to show that to leading order, the radial velocity parallel to the wall is diminished by
a factor of r−1 (Happel & Brenner 1973). Thus, the radial flow near a sedimenting
particle decays as r−2, while the radial flow near a particle undergoing electrophoretic
deposition decays as r−4. Although the EHD flows considered here do not strictly
meet the criteria for ‘phoretic’ flows as set forth by Anderson (1989), they clearly
share the key attribute of flow generated by slip along the domain boundaries.

The velocity magnitude and spatial structure are significantly affected by the particle
position, but the direction of the flow is not. In contrast, both the magnitude and the
direction (but not the structure) of the EHD flow are strongly dependent on
the particle surface conductivity (figure 10). As the surface conductivity increases,
the EHD flow diminishes in magnitude and eventually reverses sign to produce an
outward flow. In terms of the dipole coefficient (3.11), the velocity increases linearly
with Co (figure 10, inset). At a critical surface conductivity (or corresponding dipole
coefficient) the flow reverses direction.

This reversal has important implications in the aggregation of suspensions. If
flow is directed radially inward, adjacent particles become mutually entrained in their
respective flows and aggregate; they repel if the flow is directed radially outward. Even
more complicated behaviour is expected in suspensions containing more than one type
of particle. For example, a binary suspension of low and high conductivity particles
will have three types of interaction: attraction between low conductivity particles;
repulsion between high conductivity particles; and an intermediate interaction
between unlike particles. Novel patterns are indeed observed with binary suspensions
(Ristenpart, Aksay & Saville 2003), but dipolar interactions also play a critical role
so it is difficult to isolate the effect of dipole coefficient on the fluid motion.
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6. Particle tracking experiments
6.1. Experimental approach, apparatus and methodology

Flow-visualization near micrometre and submicrometre particles is difficult owing
to Brownian motion. Moreover, tracer particles must be significantly smaller than
a ‘target’ particle to provide authentic tracking; optical techniques are limited to
particles larger than ∼250 nm. Accordingly, it was decided to image the EHD flow
near a large (>10 µm) particle with small (∼300 nm) tracers. Large particles do not
move significantly by Brownian motion and submicrometre tracer particles readily
track fluid motion.

Particle-tracking experiments involved a cell with two parallel electrodes separated
by a 250 µm polydimethylsiloxane (PDMS) spacer. The upper glass electrode was
coated with a thin coating of indium tin oxide, an optically transparent semiconductor
(Delta Technologies, Rs = 4�). The lower electrode was a silicon slab coated with a
150 nm thick layer of platinum (Radiant Technologies). Prior to each experiment,
the electrodes and spacer were cleaned by sonication in RBS-35 detergent (Pierce
Chemicals), rinsed, sonicated again for 10 min in deionized water, and then dried with
filtered nitrogen gas. Fluorescent tracer particles (300 nm diameter, Duke Scientific)
were washed and diluted in 1 mM potassium chloride (KCl) to a volume fraction
of approximately 10−3. Flow was tracked around either 50 µm diameter silica or
polystyrene particles (Duke Scientific).

To begin an experiment, an aliquot of the target particle suspension was placed in
the cell, followed by a small amount of the tracer particle suspension. After the system
became quiescent, oscillatory fields were applied with a Tektronix function generator
(PFG5505) and measured with a Tektronix digital oscilloscope (TDS2012). Tracer
particle motion in the EHD flow was observed through a Zeiss Axiovision fluorescence
optical microscope and recorded with digital CCD camera. Images obtained in this
fashion were oriented such that the electric field was directed normal to the plane
of the image. Although the tracer particles are charged, electrophoretic motion is
negligible in the high-frequency fields used here. The positions of the tracer particles
were extracted from the recorded images using standard image analysis techniques.

6.2. Results and comparison with theory

When placed in the cell, the large target particles settled towards the bottom electrode
where they remained effectively stationary. The ‘resting height’ of a particle depends
on the balance between gravity, van der Waals attraction, electrostatic repulsion,
steric forces and hydrodynamic drag. Fagan et al. (2002) showed that the equilibrium
particle height for polystyrene particles is several Debye thicknesses and can change
significantly in a strong electric field (presumably due to the drag force generated by
EHD flow). The 50 µm silica particles employed in this work are much larger and
denser, so gravity predominates over drag. The potential energies due to electrostatic
repulsion (calculated using the Deraguin approximation), van der Waals attraction
and gravity, are, respectively,

Φes(h) = 64πεε0(kBT /e)2 tanh(eζe/4kBT ) tanh(eζp/4kBT ) exp(−κh), (6.1)

Φvdw(h) = −A
a

6h

[
1 +

h

2a + h
+

h

a
ln

(
h

2a + h

)]
, (6.2)

Φg(h) = −4/3πa3(ρs − ρf )gh. (6.3)

Here, A is the effective Hamaker constant for the particle and electrode; for platinum
and silica immersed in water A ∼ 2.0 × 10−20 J. The surface potentials of the electrode
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and particle are ζe and ζp , respectively. For oscillatory fields, these values oscillate
with the applied field, so even in the absence of electrokinetic effects the particle
height varies. For frequencies ω � 100 Hz, however, the particle has insufficient time
to move before the field changes direction (Fagan et al. 2002). Furthermore, for
surface potentials much larger than 4 kBT /e the repulsive force is ‘saturated’, i.e.
independent of the precise value. Assuming this to be the case for both surfaces yields
a potential energy minimum at h = 46 nm (h/a = 0.001). The equation also indicates
a large maximum at h = 0.6, but this small separation is outside the range for which
the equation is valid. Nevertheless, this calculation and the flow visualization to be
discussed shortly indicate that the target particle is separated from the electrode.

According to the Stokes–Einstein equation – with a logarithmic correction for the
proximity of the electrode surface (Russel et al. 1991) – the time to migrate a certain
distance is

t =
6πµa〈x2〉

2kBT
| ln(h/a − 1)|. (6.4)

Thus, a 50 µm particle resident 50 nm above the electrode requires ∼11 h to move 5 µm
and Brownian motion of the target particles was negligible. To determine whether
target particles were caught on the electrode, the cell was briefly tilted to a ∼30◦

angle. Target particles always moved immediately, consistent with a thin layer of
liquid separating the particle from the electrode. Moreover, some small fraction of
the target particles contained visible non-uniformities (bumps or blemishes). These
non-uniformities did not rotate as the particles moved along the electrode, consistent
with a sliding rather than rolling motion.

After visual confirmation that target particles were isolated, tracer particles were
introduced into the cell. Tracers exhibited vigorous Brownian motion with no obvious
bias, and upon application of the field, tracers close to a target began to move rapidly
toward the target. No motion was apparent at potentials below 2 V or at frequencies
above 3 kHz. Directed tracer motion was clearly evident at locations between 1 and
2 target particle radii (50 to 100 µm) from the target particle (figure 11). A tracer’s
speed increased as it approached the target and disappeared from view underneath.
Shifting the microscope focal plane half-way up the target particle (∼50 µm) revealed
tracer particles reappearing, although the motion was not easily discernible since the
tracers moved almost vertically through the focal plane. Careful observation showed
that the tracers were moving upward and away from the target. The outward motion
was observed only near (within ∼50 µm) the edge of the particle and the speed was
roughly a half to a quarter of the tracer velocity across the electrode. Moving the focal
plane well above the target particle (100–200 µm) revealed only Brownian motion.

Since polystyrene target particles are opaque, tracers are not observable underneath
them. However, silica particles are transparent to visible light. Consequently, in
reflection-mode microscopy, objects directly beneath a 50 µm silica particle are visible,
although their size is magnified by a factor of roughly two. Shifting the nominal focal
plane below the bottom of the particle (to ∼10 µm below the electrode) revealed
tracer particles moving rapidly toward the ‘south pole’ of the target. When tracers
were approximately 5 to 10 µm away from the ‘pole’, they suddenly reversed direction.
Such behaviour shows that dielectrophoretic forces are negligible since particles
undergoing dielectrophoresis do not move into and then out of regions of high
electric field strength (Pohl 1967).

In summary, observations were made with over a hundred target particles in
different experimental cells. Tracers move primarily by Brownian motion until they
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Figure 11. Particle-tracking results. Fluorescence microscopy was used to track 300 nm
fluorescent polystyrene ‘tracer’ particles approaching a 50 µm silica target particle in an
oscillatory electric field. (a) Cross-sectional schematic of tracer trajectories. The sudden change
of direction was observed directly through a transparent silica particle. (b) Plan view of particle
paths in a focal plane near the electrode. The rectangular box indicates the field-of-view. (c, d)
Sequences of tracer positions as they approach the target particle near the electrode surface
in a 750 Hz field: (c) �φ = 4 V and (d) �φ = 9 V. The semicircle indicates the outer diameter
of the target particle, only half of which was within the microscope field-of-view during an
experiment. The time intervals, in seconds, between the first appearance of the tracer particle
in the focal plane and its disappearance underneath the target particle are noted adjacent to
each trajectory. Note that Brownian motion affects the tracer trajectories at 4 V, but is less
pronounced at 9 V.

are approximately 50 µm from the edge of the target particle, whereupon they begin
to move radially inward, accelerating as they go. Underneath the target particle,
tracers reverse course upon reaching a certain position, whereupon they move up and
away from the target particle, slowing down as they move. The tracer particle motion
accords with the streamlines presented in figure 7.

To provide more data to test the theoretical model, several dozen tracer particles
were tracked as they moved towards an isolated silica particle (cf. figure 11c, d).
Figure 12 shows radial positions at different potentials and frequencies. The time t0
is defined as the time at which the tracers nominally reached the edge of the target
particle. Owing to the finite acquisition rate of the CCD camera (1 image per ∼200 ms),
the exact moment at which a particle disappears could not always be captured. To
circumvent this problem, the time data for each tracer were normalized such that the
tracer passed r/a = 1.15 at the same time; the time t0 that best yielded the intercept
for r/a =1 was then determined. Although Brownian motion affected the trajectories,
particularly at lower applied potentials or higher frequencies, the ‘mean’ trajectories
were clearly delineated.
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Figure 12. Radial positions of 300 nm fluorescent tracer particles moving across the electrode
toward a 50 µm silica target particle as a function of time. The time, t0, was defined as the time
when the tracer particle moved under the edge of the target particle (r/a = 1). (a) Constant
frequency (750 Hz) experiments at different applied potentials. �, 4 V; �, 6 V; �, 9 V. The
number of tracer particles observed at each potential was 32, 22 and 28. Solid lines are the
model predictions, using a surface conductivity, Ks , of 1.4 nS. (b) Constant potential (�φ = 6 V)
experiments at different frequencies: �, 500Hz; �, 1000 Hz; �, 1500Hz. The number of tracer
particles observed at each frequency was 19, 218 and 28. Solid lines are the model predictions,
fit using the same surface conductivity, Ks = 1.4 nS.

The sizes of the error bars in figure 12 (one standard deviation in tracer position)
are partly due to the obscuring effect of Brownian motion. Tracking over 200 tracers
(rather than the typical 20) yielded little improvement (figure 12b, �). Several effects
contribute to the variability. First, the depth of the focal plane was approximately
6 µm, which limited the accuracy in determining the vertical location of a tracer with
respect to the electrode. That some tracer particles moved noticeably faster or slower
than others could be due to differences in their vertical location. Furthermore, some
of the tracer paths appear to intersect the target particle at angles other than 90◦,
indicating non-axisymmetric flow. This is partly due to Brownian motion, as depicted
in figure 11(c). Other factors are inhomogeneities on the particle or electrode surface
and small displacements of the target particle.

To compare experiment and theory, the separation distances between the target
particle and the electrode and that between the tracer particle and the electrode must
be known. As mentioned earlier, a potential energy balance yielded a 50 nm height
for silica target particles. For a tracer particle, the height was taken as the midpoint
of the 3 µm thick focal plane. The other parameter is the particle surface conductivity
(equation (3.9)). The silica particles have nominal surface potentials of −100 mV
under the experimental conditions, but more complicated mechanisms increase this
value substantially (Mangelsdorf & White 1990; Rosen, Baygents & Saville 1993). For
wont of a more definitive model, the surface conductivity is treated as an adjustable
parameter.

Position–time data were computed from the analytical model by means of a first-
order explicit forward Euler scheme. For the constant frequency data (figure 12a),
selection of a surface conductivity Ks = 1.4 × 10−9 S yielded positions in excellent
agreement with the experimental observations at all three applied potentials. The
agreement between the theory and the experiment for different frequencies (figure 12b)
was less satisfactory. Use of a Ks value of 1.4 × 10−9 S yields curves that have the
correct ‘shape’, but disagree quantitatively with the data; indeed, no single value of
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Ks was able to fit the data. The theory underestimates the velocities at 1000 and
1500 Hz, and overestimates the velocity at 500 Hz.

7. Summary
Analytical expressions were derived for the electric field and corresponding EHD

velocity engendered by the presence of a single polarizable particle near an electrode.
Numerical calculations for thin double layers and oscillatory fields indicated that a
constant field strength electrode boundary condition is a good approximation. The
resulting flow structure is toroidal with a far-field radial velocity that decays as r−4.
According to the analysis, the direction of flow depends on the particle dipole coef-
ficient. To test the predictions, the motion of fluorescent tracer particles was tracked
around a large particle. With the particle surface conductivity treated as the sole
fitting parameter, the experimental trajectories accord with the theoretical analysis.

Although the analysis focused on the flow around an individual particle, the
underlying behaviour will be found in many-particle systems with smaller particles
(Nadal et al. 2002; Ristenpart et al. 2004). First, the distortion to the electric field
on the electrode caused by the presence of the particle diminishes with the particle
size. Thus, the constant-field-strength condition is a better approximation for 2 µm
particles than for the 50 µm particles studied here. Likewise, smaller particles reside
further from the electrode since the effect of gravity is negligible and the larger value
of κh further improves the accuracy of the constant-field-strength condition.

Two aspects of the EHD frequency dependence are noteworthy. First, the decay of
the EHD velocity with frequency is consistent with reports of cluster disaggregation
at higher frequencies (Trau et al. 1996; Solomentsev, Bohmer & Anderson 1997).
Although some authors have hypothesized that a reverse in the direction of flow at a
critical frequency is responsible for disaggregation (Sides 2001, 2003), no such reverse
in flow was observed here experimentally. An alternative hypothesis focuses on dipolar
interactions, which are generally not negligible for similarly sized particles. Most
authors have attributed observations of repulsive behaviour to dipolar effects (Gong &
Marr 2001; Nadal et al. 2002; Ristenpart et al. 2003, 2004). The monotonically
decaying velocity reported here accords with these reports of particle repulsion at
higher frequencies, since the attractive EHD flow decays, but the dipolar interaction
remains roughly constant over the frequency range of interest. This model also
explains observations of stable aggregates with large interparticle separations that are
highly sensitive to frequency, but depend very weakly on field strength (Nadal et al.
2002; Kim et al. 2002), since both dipolar forces and EHD flow scale as E2.

The second key aspect of the frequency dependence is that the EHD velocity
obtained here scales roughly as ω−2, in contrast to the point-dipole analysis presented
by Ristenpart et al. (2004) where the EHD velocity scales as ω−1. The difference
arises from different assumptions, which can be illustrated with the point-dipole
scaling expression

u ∼ C ′
o

(
1 +

κ3D2

ω2H

)
+ C ′′

o

κ2D

ω
. (7.1)

In this work, the Péclet number is assumed to be identically zero, so convection does
not affect the electric potential around the particle, i.e. the electric field is changing
slowly so the ion distribution can continuously readjust. This effectively sets C ′′

o to zero
at low frequencies and the inverse-square-frequency dependence predominates. In the
point-dipole analysis of Ristenpart et al. (2004), however, the standard electrokinetic
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model included the effect of convection on the electric potential. For particles with
high surface potentials, flow hinders the rearrangement of the ions (Delacey & White
1981) and this yields a phase lag in the potential. Thus, C ′′

o is non-zero and the inverse
frequency dependency sets in.

Since the kinetic aggregation experiments support an inverse dependence (Kim
et al. 2002; Ristenpart et al. 2004), while the zero-Péclet number approximation
employed did not, it appears that the effect of convection on the potential
distribution is not unimportant. Inasmuch as Pe ∼ 0.6 here, this is understandable.
More detailed modelling will be required to incorporate this effect. Nonetheless, the
close correspondence between the predicted tracer positions and the experimental
results indicates that the zero-Péclet number model accurately captures the structure
of the EHD flow.
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Böhmer, M. 1996 In situ observation of 2-dimensional clustering during electrophoretic deposition.
Langmuir 12, 5747–5750.

Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface.
Chem. Engng Sci. 16, 242–251.

Dai, J. H., Ito, T., Sun, L. & Crooks, R. M. 2003 Electrokinetic trapping and concentration
enrichment of DNA in a microfluidic channel. J. Am. Chem. Soc. 125, 13 026–13 027.

Delacey, E. H. B. & White, L. R. 1981 Dielectric response and conductivity of dilute suspensions
of colloidal particles. J. Chem. Soc. Faraday Trans. II 77, 2007–2039.

Dukhin, S. S. & Shilov, V. N. 1980 Kinetic aspects of electrochemistry of disperse systems
2: Induced dipole-moment and the nonequilibrium double-layer of a colloid particle. Adv.
Colloid Interface Sci. 13, 153–195.

Fagan, J. A., Sides, P. J. & Prieve, P. C. 2002 Vertical oscillatory motion of a single colloidal
particle adjacent to an electrode in an AC electric field. Langmuir 18, 7810–7820.

Gau, H., Herminghaus, S., Lenz, P. & Lipowsky, R. 1999 Liquid morphologies on structured
surfaces: from microchannels to microchips. Science 283, 46–49.

Gong, T. & Marr, D. W. M. 2001 Electrically switchable colloidal ordering in confined geometries.
Langmuir 17, 2301–2304.

Gong, T. Y., Wu, D. T. & Marr, D. W. M. 2002 Two-dimensional electrohydrodynamically induced
colloidal phases. Langmuir 18, 10 064–10 067.

Gonzalez, A., Ramos, A., Green, N. G., Castellanos, A. & Morgan, H. 2000 Fluid flow induced
by nonuniform AC electric fields in electrolytes on microelectrodes. ii. A linear double-layer
analysis. Phys. Rev. E 61, 4019–4028.

Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics . Noordhoff, Leiden.

Hollingsworth, A. D. & Saville, D. A. 2003 A broad frequency range dielectric spectrometer
for colloidal suspensions: cell design, calibration, and validation. J. Colloid Interface Sci. 257,
65–76.

Jackson, J. D. 1975 Classical Electrodynamics , 2nd edn. John Wiley.



108 W. D. Ristenpart, I. A. Aksay and D. A. Saville

Joannopoulos, J. D. 2001 Self-assembly lights up. Nature 414, 257–258.

Kim, J., Guelcher, S. A., Garoff, S. & Anderson, J. L. 2002 Two-particle dynamics on an electrode
in AC electric fields. Adv. Colloid Interface Sci. 96, 131–142.

Mangelsdorf, C. S. & White, L. R. 1990 Effects of Stern-layer conductance on electrokinetic
transport-properties of colloidal particles. J. Chem. Soc. Faraday Trans. 86, 2859–2870.

Mangelsdorf, C. S. & White, L. R. 1992 Electrophoretic mobility of a spherical colloidal particle
in an oscillating electric-field. J. Chem. Soc. Faraday Trans. 88, 3567–3581.

Moon, P. & Spencer, D. 1988 Field Theory Handbook: Including Coordinate Systems, Differential
Equations, and their Solutions , 2nd edn. Springer.

Morrison, F. A. & Stukel, J. J. 1970 Electrophoresis of an insulating sphere normal to a conducting
plane. J. Colloid Interface Sci. 33, 88.

Nadal, F., Argoul, F., Hanusse, P., Pouligny, B. & Ajdari, A. 2002 Electrically induced
interactions between colloidal particles in the vicinity of a conducting plane. Phys. Rev.
E 65, 061409.

O’Brien, R. W. 1986 The high-frequency dielectric-dispersion of a colloid. J. Colloid Interface Sci.
113, 81–93.

O’Brien, R. W. & White, L. R. 1978 Electrophoretic mobility of a spherical colloidal particle.
J. Chem. Soc. Faraday Trans. II 74, 1607–1626.

O’Konski, C. T. 1960 Electric properties of macromolecules. 5. Theory of ionic polarization in
polyelectrolytes. J. Phys. Chem. 64, 605–619.

Pohl, H. A. 1967 Theoretical aspects of dielectrophoretic deposition and separation of particles.
J. Electrochem. Soc. 114, C209.

Reed, L. D. & Morrison, F. A. 1976 Hydrodynamic interactions in electrophoresis. J. Colloid
Interface Sci. 54, 117–133.

Ristenpart, W. D. 2005 Electric-field induced assembly of colloidal particles. PhD thesis, Princeton
University.

Ristenpart, W. D., Aksay, I. A. & Saville, D. A. 2003 Electrically guided assembly of planar
superlattices in binary colloidal suspensions. Phys. Rev. Lett. 90, 128303.

Ristenpart, W. D., Aksay, I. A. & Saville, D. A. 2004 Assembly of colloidal aggregates by
electrohydrodynamic flow: kinetic experiments and scaling analysis. Phys. Rev. E 69, 021405.

Rosen, L. A., Baygents, J. C. & Saville, D. A. 1993 The interpretation of dielectric response
measurements on colloidal dispersions using the dynamic Stern layer model. J. Chem. Phys.
98, 4183–4194.

Russel, W. B., Saville, D. A. & Schowalter, W. R. 1991 Colloidal Dispersions , 1st edn. Cambridge
University Press.

Sides, P. J. 2001 Electrohydrodynamic particle aggregation on an electrode driven by an alternating
electric field normal to it. Langmuir 17, 5791–5800.

Sides, P. J. 2003 Calculation of electrohydrodynamic flow around a single particle on an electrode.
Langmuir 19, 2745–2751.

Solomentsev, Y., Bohmer, M. & Anderson, J. L. 1997 Particle clustering and pattern formation
during electrophoretic deposition: a hydrodynamic model. Langmuir 13, 6058–6068.

Solomentsev, Y., Guelcher, S. A., Bevan, M. & Anderson, J. L. 2000 Aggregation dynamics for
two particles during electrophoretic deposition under steady fields. Langmuir 16, 9208–9216.

Squires, T. M. & Bazant, M. Z. 2004 Induced-charge electro-osmosis. J. Fluid Mech. 509, 217–252.

Stimson, M. & Jeffery, G. 1926 The motion of two spheres in a viscous fluid. Proc. R. Soc. Lond.
A 111, 110.

Stone, H. A. & Kim, S. 2001 Microfluidics: basic issues, applications, and challenges. AIChE J. 47,
1250–1254.

Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics
toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411.

Tegenfeldt, J. O., Prinz, C., Cao, H., Huang, R. L., Austin, R. H., Chou, S. Y., Cox, E. C. &

Sturm, J. C. 2004 Micro- and nanofluidics for dna analysis. Analyt. Bioanalyt. Chem. 378,
1678–1692.

Trau, M., Saville, D. A. & Aksay, I. A. 1996 Field-induced layering of colloidal crystals. Science
272, 706–709.

Trau, M., Saville, D. A. & Aksay, I. A. 1997 Assembly of colloidal crystals at electrode interfaces.
Langmuir 13, 6375–6381.



Electrohydrodynamic flow around a colloid near an electrode 109

Velev, O. & Kaler, E. 1999 In situ assembly of colloidal particles into miniaturized biosensors.
Langmuir 15, 3693–3698.

Whitesides, G. M. & Grzybowski, B. 2002 Self-assembly at all scales. Science 295, 2418–2421.

Whitesides, G. M. & Stroock, A. D. 2001 Flexible methods for microfluidics. Phys. Today 54,
42–48.

Yeh, S. R., Seul, M. & Shraiman, B. I. 1997 Assembly of ordered colloidal aggregates by electric-
field-induced fluid flow. Nature 386, 57–59.

Zhang, K. Q. & Liu, X. Y. 2004 In situ observation of colloidal monolayer nucleation driven by
an alternating electric field. Nature 429, 739–743.




