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We investigate experimentally and theoretically the coalescence dynamics of two spreading droplets on
a highly wettable substrate. Upon contact, surface tension drives a rapid motion perpendicular to the line
of centers that joins the drops and lowers the total surface area. We find that the width of the growing
meniscus bridge between the two droplets exhibits power-law behavior, growing at early times as t1=2.
Moreover, the growth rate is highly sensitive to both the radii and heights of the droplets at contact, scaling
as h3=2

o =Ro. This size dependence differs significantly from the behavior of freely suspended droplets, in
which the coalescence growth rate depends only weakly on the droplet size. We demonstrate that the
scaling behavior is consistent with a model in which the growth of the meniscus bridge is governed by the
viscously hindered flux from the droplets.
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Research on drop coalescence has focused on the case of
two spherical drops or bubbles floating in fluid [1–3].
Coalescence also occurs, however, between drops located
on solid substrates. The coalescence process on substrates
consists of two stages: an initial rapid growth of a meniscus
bridge between the droplets, and a slow rearrangement of
the combined droplet shape from elliptical to more circular
at longer times. Previous work on the coalescence of
sessile drops has focused on the latter stage [4–6], but
the dynamics of the first stage are crucial to applications
where drops impinge, condense, or spread on substrates.
For example, in spray painting and spray coating the
material properties of the resulting solid coating depend
sensitively on the extent of coalescence before fluid motion
is hindered by other physical processes (e.g., solidification
due to cooling or solvent evaporation) [7,8]. Similarly,
liquid and chemical imbibition on plant foliage is directly
affected by drop coalescence, since drops drain off by
gravity upon reaching a critical weight [9,10]. At smaller
length scales, a primary objective of microfluidic devices is
to study chemical or biological kinetics in small volumes
by rapidly mixing two droplets with different reactants
[11,12]; several techniques have been developed to maneu-
ver sessile droplets toward one another so that they may
coalesce [13–16]. Despite the broad range of phenomena
affected by drop coalescence on substrates, the influence of
geometric and material parameters on the coalescence
behavior on substrates has remained obscure.

In this Letter, we investigate the early-time coalescence
dynamics of thin viscous droplets spreading due to surface
tension on a flat, wettable substrate. We show experimen-
tally and numerically that in the limit where the initial
heights of the droplets ( just prior to coalescence) are small
compared to their radii (ho � Ro) the time-dependent
width dm�t� of the meniscus bridge between the two merg-
ing droplets (each with viscosity � and surface tension �)

is governed by a simple scaling law, dm � ��h3
ot=�R2

o�
1=2.

This scaling is consistent with an elementary mass conser-
vation model in the context of the lubrication approxima-
tion, wherein the meniscus growth is limited by the
viscously hindered flux from the droplets. Surprisingly,
details about the curvature of the meniscus bridge are not
necessary to predict the meniscus growth, despite the
putative role of the meniscus curvature in driving the
coalescence process. This suggests that thin-film coales-
cence might be similarly calculable in other more complex
geometries (e.g., multiple droplets or droplets on cylindri-
cal fibers). Although many systems of interest involve
equilibrium contact angles larger than those studied here,
the results for the limiting case of infinitesimal angles
should establish a lower bound for the coalescence rate
of droplets with larger contact angles.

Our experimental setup (Fig. 1) consisted of adjacent
silicone oil droplets placed on transparent polystyrene petri
dishes (Falcon brand No. 353003). Prior to each experi-
ment, a fresh petri dish was rigorously washed with deter-
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FIG. 1. Sketch of two thin droplets coalescing on a flat sub-
strate. (a) Elevation view. (b) Plan view. Dashed lines indicate
the control volume around the meniscus bridge.
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gent, ethanol, and deionized water and then dried with
filtered nitrogen gas. Three different silicone oils (Sigma
Aldrich polydimethylsiloxane 200® fluid, � � 20 mN=m)
with viscosities of 100, 350, and 1000 cS were used as
provided. The apparent equilibrium contact angle of each
silicone oil on the polystyrene substrate was close to zero;
given enough time, droplets spread over the entire petri
dish. The droplet heights in our experiments never ex-
ceeded 0.5 mm, justifying neglect of gravitational effects
in the analysis below.

To begin an experiment, a multitip hand pipetter with
two disposable pipette tips was used to simultaneously
deliver two droplets of oil to the substrate about 10 mm
apart. The delivered volume of each droplet was approxi-
mately 20 �L; consistent reproducibility in droplet vol-
ume was difficult due to the tendency of the oil to wet the
pipette tips. The coalescence dynamics were then observed
with an optical microscope (Leica DM-IRB) using a phase-
contrast objective and recorded with a CCD camera. The
apparent contact lines were extracted from the recorded
images using standard image analysis techniques.

A typical coalescence experiment is presented in Fig. 2.
Prior to contact, the droplets spread radially [Fig. 2(a) and
2(b)]. Only a fraction of each droplet was within the
microscope field of view, but enough was visible to calcu-
late the growing radius of each droplet. Experiments where
either the radii or the precoalescence spreading velocities
of the two droplets differed by more than 10% from one
another were excluded from analysis. Comparison of best-
fit circles to the droplet contact line consistently yielded
agreement to within �1 pixel, indicating that the flow was
radial and fully developed prior to coalescence.

Upon contact [Fig. 2(b)], the meniscus bridge grew out
rapidly in the direction normal to the droplet line of centers
[Fig. 2(c)–2(e)]. As time progressed, the velocity of the
growing meniscus decreased. At very long times (>30�
60 min), the combined elliptical droplet arranged into a
more circular shape. Here we focus on the early-time
dynamics, as depicted in Fig. 2.

The meniscus bridge width dm�t� is plotted as a function
of time for three different viscosities (19 total experiments)
in Fig. 3(a). The data indicate two important aspects of the
coalescence behavior. First, the coalescence process is
viscously dominated. Although there is overlap in the
data, on average the 100 cS oil coalesced more rapidly
than the 350 cS oil, which coalesced more rapidly than the
1000 cS oil. Second, there is a significant degree of vari-
ability between experimental trials with the same liquid:
the apparent velocities differ by as much as a factor of 5 for
ostensibly identical conditions.

To make sense of this scatter in the data, it is instructive
to examine the governing equations for the evolution of
thin films. In the lubrication limit, the height h of a thin
liquid film is governed by the fourth-order partial differ-
ential equation [17]
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where gravitational forces are neglected. Choosing char-
acteristic length scales h� ho and r� 1=Ro, where ho
and Ro are, respectively, the maximum height and radius of
the drops defined at the time of contact (to), we identify the
dimensionless time

 � 

�h3

0

�R4
0

�t� to�: (2)

This expression suggests that the geometry of the droplets
has a pronounced influence on the coalescence dynamics,
so slight variations in the droplet volume may account for
the scatter [Fig. 3(a)].

Rescaling the data using � requires a measurement of the
droplet heights, but with the camera oriented perpendicu-
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FIG. 2. Optical microscopy images of two silicone oil droplets
(� � 1000 cS) spreading and coalescing on a flat polystyrene
substrate. Dark regions are oil, light regions are background.
Note that the droplet centers are outside the field of view. In later
images, the light ‘‘halo‘‘ in the center of the oil is an artifact due
to the decreased curvature with respect to the incident light.
Scale bar in (a) is 500 �m.
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larly to the substrate the height could not be measured
directly from the experimental images. However, after
delivery to the substrate the total volume of each droplet
is constant, so the height is related to the spreading velocity
via Tanner’s law [18], _R � ��=���h=R�3, which upon
rearrangement yields h � R�� _R=��1=3. Although not
quantitatively accurate, this expression does incorporate
the effect of variable height by means of the experimen-
tally observable spreading velocity. Measurements of the
precontact spreading velocities reveal a strong correlation
with the post-contact coalescence velocities (data not
shown), suggesting that the initial droplet height affects
the coalescence speed.

To test the proposed time scaling, the meniscus widths
were scaled by Ro and time rescaled as �, using Tanner’s
law to estimate the height as ho � Ro�� _Ro=��

1=3.
Rescaling the data in this manner collapses the data onto

a master curve [Fig. 3(b)]. Furthermore, when the results
are plotted on a log-log scale, the best-fit slope for dm / ��

yields � � 0:53 [Fig. 3(b), inset].
To further explore this power-law response, we inves-

tigated Eq. (1) numerically using a finite-difference
method [19]. The domain consisted of two spreading drop-
lets, of initial radius R� and initial height h�, with a
symmetry plane down the line of centers. Slip on the solid
substrate was modeled by means of a thin precursor film of
thickness h1 � h� through the remainder of the domain;
in this manner complexities associated with the moving
contact line are avoided. Preliminary calculations con-
firmed that Tanner’s law is recovered for a single spreading
droplet in the limit as � � h�=h1 ! 0. The numerical
results for coalescing drops show that the early meniscus
growth is indeed characterized by a power law �1=2, con-
sistent with the experimental results (Fig. 4).

Although the experimental and numerical results sug-
gest that the growing meniscus bridge obeys a power-law
scaling with exponent 1=2, the physical explanation for
this result is not obvious a priori from the governing
equation. The scaling behavior is explicable, however, in
terms of a mass balance on the growing meniscus bridge.
For the incompressible flows under consideration here, the
change of volume of the meniscus bridge is balanced by
the fluid flux into it, viz.

 

dVm
dt
� huiAm: (3)

Here the control volume is approximated by a rectangular
box of length dm, width wm, and average height hm
[cf. Fig. 1]. An exact definition of hm is unimportant since
it does not affect the final result. Fluid only enters the
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FIG. 4. Numerical calculations of the meniscus width vs di-
mensionless time, �� � �h3

��t� to�=�R
3
�, for two different pre-

cursor film thicknesses. Inset: numerical calculations of the
depth-averaged velocities versus time. Solid line: the maximum
x velocity calculated on the x axis (the line joining the drop
centers). Dashed line: the maximum y velocity on the axis at the
point of contact (x � Ro).
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FIG. 3. (a) Width of the meniscus bridge versus time for three
different viscosities. Symbols:�, 100; �, 350;4, 1000 cS. Data
represent 19 separate experiments; to is the time of initial
contact. (b) Width of the meniscus bridge in scaled coordinates,
using all of the data presented in (a). Inset: logarithmic scale,
fit slope � 0:53.
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control volume through the sides facing the two droplets,
each with area Am � dmhm. Likewise, the volume Vm is
approximately Vm � dmwmhm � d3

mhm=Ro, where the lat-
ter equivalence follows from a series expansion for wm,
valid for dm  wm. Rearrangement of Eq. (3) and substi-
tution of the dimensionless time scale [cf. Eq. (2)] yields
the dimensionless expression d2

m � �hui, where the veloc-
ity is scaled on the Tanner’s law velocity.

It is noteworthy that for time-independent average ve-
locities, the mass balance already yields the scaling rela-
tion dm � �1=2. Our numerical calculations of the velocity
field into and inside the meniscus bridge confirm that the
average influx varies little over the time of interest (Fig. 4,
inset). Prior to contact, the maximum x velocity is a
measure of the spreading velocity; after contact, it is a
measure of the liquid flow into the meniscus. The key
observation is that the influx velocity varies very slowly
with time. Likewise, the maximum y velocity is clearly
negligible and unaffected by coalescence in the time inter-
val shown, demonstrating that the initial phase of meniscus
growth after contact is governed by the slow flux in the x
direction due to spreading.

It may seem surprising that a mass balance yields accu-
rate scaling predictions for the meniscus growth, in spite of
the neglect of details regarding the meniscus curvature.
Indeed, for time invariant influx velocities, the mass con-
servation argument yields predictions equivalent to those
obtained by calculating the intersection width of two ad-
jacent circles whose radii increase linearly with time (as
demonstrated by geometric arguments). It is important to
note that there is no reason a priori to expect that the influx
velocity is constant; for example, one might expect that the
velocity is affected by complications associated with the
overlap of the droplet precursor films or the initially infi-
nite curvature of the meniscus. The key result of this work
is that any such effects are negligible.

In summary, we find experimentally and numerically
that the meniscus bridge between two spreading sessile
drops grows as dm � ��h3

ot=�R2
o�

1=2, which is consistent
with a mass conservation model in the lubrication limit.
Other coalescence phenomena might exhibit similar scal-
ing behavior in situations where fluids spread toward one
another. For example, spreading of thin drops driven by
gravity rather than surface tension should exhibit similar
scaling; a numerical study by Diez and Kondic suggests
that the meniscus bridge indeed increases as t1=2 in the case
of gravitational spreading [20]. Likewise, drop coalescence
in porous media or on highly curved substrates might be
amenable to such analysis since the velocities of individu-
ally spreading droplets are well characterized.

In the context of droplets on flat substrates, it is instruc-
tive to compare the obtained scaling for thin films with that
of freely suspended liquid spheres. As discussed by Eggers
et al. [2], the radius of the meniscus bridge between two

coalescing liquid spheres grows linearly with time, with a
weak (logarithmic) dependence on the drop radii.
According to the present results, thin droplets on substrates
coalesce much more slowly with a strong (power-law)
dependence on their geometry. Presumably the coales-
cence behavior of sessile droplets with very large contact
angles (close to 180�) is more similar to that of freely
suspended spheres than thin droplets. This suggests that the
scaling law obtained here serves as a lower bound for
estimating the coalescence rate of sessile droplets with
larger contact angles.
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