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Nonuniform evaporation from sessile droplets induces radial convection within the drop, which
produces the well-known ‘‘coffee-ring’’ effect. The evaporation also induces a gradient in temperature
and consequently a gradient in surface tension, generating a Marangoni flow. Here we investigate
theoretically and experimentally the thermal Marangoni flow and establish criteria to gauge its influence.
An asymptotic analysis indicates that the direction of the flow depends on the relative thermal
conductivities of the substrate and liquid, kR � kS=kL, reversing direction at a critical contact angle
over the range 1:45< kR < 2. We corroborate the theory experimentally and demonstrate that the
Marangoni flow can significantly influence the resulting patterns of particle deposition.
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The hydrodynamic consequences of nonuniform evapo-
ration from sessile droplets are important not only because
of their ubiquitous nature (e.g., coffee stains [1] ) but also
because of the implications for a variety of evaporative
self-assembly techniques [2–5] and printing applications
[6–8]. Early investigators led by Deegan et al. [1,9,10]
observed the flow patterns in drops with pinned contact
lines and explained the flow in terms of the higher rate of
mass loss near the contact line. They also noted, however,
that the flow field is affected by surface tension gradients,
i.e., Marangoni flows [9]. The nonuniform evaporation
draws energy unevenly from the drop, creating temperature
gradients and consequently altering the surface tension.
Deegan et al. assumed that the drop was coldest on top
because of the longer conduction path from the isothermal
substrate. Although numerical simulations have corrobo-
rated this view for evaporating drops on substrates with
infinite thermal conductivities [11–13], numerical calcula-
tions on a substrate with finite conductivity have suggested
the circulation reverses direction at a critical contact angle
[14]. This result is both surprising and significant, since
Marangoni flow directed radially inward along the sub-
strate actively hinders the deposition of particles at the
drop edge. The circulation reversal has not been observed
experimentally, however, and despite extensive investiga-
tions of the coffee-stain problem [1,9–21] the role of
substrate thermal conductivity has remained unclear.

In this Letter we establish quantitative criteria for the
magnitude and direction of thermal Marangoni flow inside
evaporating sessile drops, and we show that the circulation
direction depends on both the contact angle and the ratio of
substrate and liquid thermal conductivities. An asymptotic
analysis indicates that the drop is warmest at the contact
line only if the substrate conductivity kS is at least a factor
of 2 greater than the liquid conductivity kL (i.e., kR �
kS=kL > 2). In this situation, the consequent Marangoni
flow is directed radially outward along the substrate. For
1:45< kR < 2, the direction of the temperature gradient
(and the resulting flow) depends on the contact angle �c,

while for kR < 1:45 the drop is coldest near the contact line
and the circulation direction is reversed, i.e., radially in-
ward along the substrate. These predictions are corrobo-
rated experimentally using organic liquids on insulating
substrates. Furthermore, the experiments confirm that the
Marangoni flow, of either direction, significantly alters the
resulting particle deposition patterns, an effect with impli-
cations for printing applications [7,8], ‘‘Marangoni dry-
ing‘‘ techniques for cleaning substrates [22], and
evaporative self-assembly of colloids [23,24].

We focus on slowly evaporating drops in which the mass
flux of vapor from the drop is described by

 j�x� � j0�1� �x=R�2��1=2��c=�; (1)

where �c is the contact angle (0< �c < �=2, cf. Fig. 1), x
is the distance from the center of the drop which has radius
R, and the prefactor j0 depends on the saturation pressure,
the vapor diffusivity, and the far field concentration.
Numerical calculations indicate that this expression is
accurate to within 5% over the entire range of contact
angles [18]. The nonuniform flux induces flow inside drops
with pinned contact lines to satisfy conservation of mass,
but it also withdraws energy from the system. For negli-
gible heat conduction and convection in the air, the inter-
facial energy balance is

 � kLn 	 rT � �Hvj�x� at y � h�x�; (2)

where �Hv is the specific latent heat of evaporation and n

FIG. 1. Sketch of an evaporating liquid drop on a solid sub-
strate, with a magnification of the three-phase contact line.
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is the unit normal. Since j�x� varies with position, the
temperature varies, and consequently a gradient in surface
tension must be balanced by viscous stress. Accordingly,
the tangential stress � is

 � � t 	 rs� � ��t 	 rsT� at y � h�x�; (3)

where t is the tangential unit vector, rs is the surface
gradient, and � � @�=@T is a material parameter that is
negative for most liquids. In writing the stress in terms of a
temperature gradient only, we are assuming that other
sources of Marangoni stress, e.g., surfactant concentration
gradients, are negligible. Thus, the sign of the temperature
gradient at the air/liquid interface governs the direction of
circulation in the drop.

To determine the sign of the temperature gradient, in
general we must solve for an unknown temperature distri-
bution T0�x� at y � 0 which depends on the geometry and
material properties of the substrate. To avoid this compli-
cation, we instead employ an asymptotic methodology to
examine the effect of the flux given by Eq. (1) on heat
transfer in the immediate vicinity of the three-phase con-
tact line. Although this approach does not yield a solution
throughout the drop, it does provide a means to determine
the direction of the temperature gradient and consequently
the Marangoni flow.

The three-phase contact line is sketched in Fig. 1. Very
close to the contact line, the curvature of the drop surface is
negligible so the interface may be modeled as a straight
line emanating from the solid substrate at an angle �c.
In this configuration it is convenient to choose cylindri-
cal coordinates (r, �). Upon substitution of x=R �
1� r cos�c, the expansion around r � 0 is

 j�r� � j0�2r cos�c��1=2��c=� � 	 	 	 : (4)

To examine the consequences of Eq. (4) on the tempera-
ture distribution, we assume that the transport is quasi-
steady. The thermal energy equation is then Pe u 	 rT �
r2T, where the Peclet number Pe gauges the relative
magnitudes of convective and conductive heat transfer.
Typically Pe
 1, but as originally pointed out by
Deegan et al., the velocity due to mass loss diverges in
the local vicinity of the contact line [1]. Although this
raises the possibility that convection dominates the heat
transfer in the corner, it is straightforward to show that
conduction is nonetheless dominant [25].

The temperature is thus governed by Laplace’s equation
r2T � 0, and the temperature fields are given by Ti �
r��Ai cos���� � Bi sin�����. Here i � L, S for the liquid
and substrate, respectively, and the constants �, Ai, and Bi
must be determined. Four boundary conditions are re-
quired. At the solid/air interface (� � �), we assume that
conduction in the air is negligible so the heat flux is zero,
n 	 rTS � 0. At the drop-solid interface (� � 0) we re-
quire continuity of temperature, TL � TS, and continuity
of the heat flux, kLn 	 rTL � kSn 	 rTS. The final bound-
ary condition at � � �c is obtained by using Eq. (4) in

Eq. (2). Matching the powers of r shows that � � 1=2�
�c=�, and application of the four boundary conditions
yields the constants Ai andBi [25]. Note that this procedure
does not yield the absolute temperature, since only fluxes
are specified at the boundaries, but this is unimportant
since the Marangoni stress is proportional to the tempera-
ture gradient. Also note that the solution is valid for all
contact angles 0< �c < �=2.

Isotherms are presented for different values of kR in
Fig. 2. The results indicate that for kR � 1 the heat flux
at the liquid/substrate interface is predominantly normal to
the substrate, while for kR � 1 the flux has a significant
tangential component. To understand the physical signifi-
cance of this result, it is fruitful to think in terms of the
availability of energy from the substrate. Recall that the
heat flux from the drop is largest near the contact line. For
substrates with large thermal conductivities, energy is
readily supplied to the contact line region, so the interface
is able to maintain a comparatively high temperature de-
spite the energy lost to evaporation. In this situation the
conduction through the drop is dominant, and the drop is
warmest near the contact line. In contrast, energy is not
readily available for substrates with low thermal conduc-
tivities. In this case, energy is extracted from the drop itself
and consequently the edge of the drop is coldest.

With respect to Marangoni flow, the circulation direction
is controlled by the temperature gradient at � � �c, which
from the asymptotic corner solution is

 

@T1

@r

�����������c

� Cr��1

�
1� kR tan���� tan���c�
tan���c� � kR tan����

�
; (5)

where C � �Hvj0=kL�2 cos�c�
��1. Given that 0< �c <

�=2 and � � 1=2� �c=�, the inequalities � > 1=2 and
��c < �=2 are satisfied. Hence, the direction of the tem-
perature gradient depends only on the sign of the numera-
tor, 1� kR tan���� tan���c�. For sufficiently large values
of kR, the numerator is negative and the temperature de-
creases with distance from the contact line. For �< 0,
Eq. (3) indicates that the resulting Marangoni flow will be
directed radially inward along the air-liquid interface, and

FIG. 2. Asymptotic temperature distributions near the contact
line of an evaporating drop with �c � �=8 (not to scale). Arrows
indicate direction of increasing temperature. (a) Isotherms for
kR � 10. The heat flux is approximately normal to the substrate.
(b) Isotherms for kR � 1. The heat flux has a large component
tangential to the substrate.

PRL 99, 234502 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
7 DECEMBER 2007

234502-2



consequently radially outward along the liquid-solid inter-
face. If the thermal conductivity of the substrate is below a
critical value, however, then the temperature increases with
distance. In this situation, the drop is coldest at the edge of
the droplet, rather than the top, and the direction of the flow
is reversed. The critical thermal conductivity ratio obtained
by setting Eq. (5) to zero is

 kcrit
R � tan��c� cot

�
�c
2
�
�2
c

�

�
; (6)

which is plotted in Fig. 3. For values of kR above (below)
the curve, the temperature decreases (increases) with dis-
tance from the contact line, and the flow is directed radially
outward (inward) along the substrate. Note that for kR <
1:45 and kR > 2 the circulation direction is insensitive to
the contact angle. However, a wide range of liquids have
thermal conductivities comparable to many commonly
used plastics and inorganic materials. For example, water
and glass have kR  1:6, and according to Eq. (6) the
Marangoni flow reverses direction at �c � 0:54 (31�).
This result is consistent with the numerical work by Hu
and Larson [14], who found that the flow reversed direction
at �c � 14� (triangles, Fig. 3).

To further test the validity of Eq. (6) as a criterion for the
direction of circulation, we performed a series of experi-

ments with different volatile liquids on polydimethylsilox-
ane (PDMS) substrates. PDMS is convenient because of its
low thermal conductivity (kS � 0:23� 0:03 W m�1 K�1,
measured with an axial heat flux method [26] ), and be-
cause many fluids are partially wetting on it. To trace the
flow, polystyrene particles 1 �m in diameter were sus-
pended at roughly 0.1% volume fraction in separate solu-
tions of methanol, ethanol, and isopropanol; 1 �m silica
particles were similarly suspended in chloroform. PDMS
slabs 4 mm thick were rigorously cleaned and dried with
compressed air, then individual 2 �L drops of solution
were placed on the PDMS and allowed to evaporate. The
resulting flow was observed from below with an optical
microscope. Adjusting the focal plane of the microscope
vertically allowed visualization of the radial component of
the particle motion at different heights in the drop and thus
allowed us to discern the direction of circulation. The
PDMS and drop were placed inside a large covered petri
dish to minimize disturbances from air currents.

For each fluid tested, the first 30 to 60 seconds after
placement of the drop were characterized by rapid chaotic
motion, followed by a rapid transition to a slower, more
orderly axisymmetric flow. The driving force for the cha-
otic flow is unclear; one possibility is the Bénard-
Marangoni instability [27]. Nonetheless, the subsequent
axisymmetric flow is consistent with flow due to thermal
Marangoni stress at the air/liquid interface; approximate
streamlines for the observed flow are depicted in Fig. 4(a).
Although the streamlines presented in Fig. 4(a) were cal-
culated by means of a lubrication analysis [25] for thermal
Marangoni flow on a conductive substrate (kR � 1), they
qualitatively capture the shape of the experimentally ob-
served flow on an insulating substrate. This suggests that
the shape of the Marangoni flow is qualitatively similar for
both conducting and insulating substrates.

FIG. 3. Experimental observations and numerical calculations
of the circulation direction inside evaporating drops. The solid
black line is Eq. (6). Regions above and below the line corre-
spond to circulation directions sketched in the respective stream-
lines (insets), obtained from the asymptotic corner flow solution
[25]. Open symbols: observed direction of circulation consistent
with temperature decreasing with distance from the contact line.
Filled symbols: reverse circulation observed, consistent with
temperature increasing with distance from the contact line.
Triangles: numerical calculations by Hu and Larson for water
on glass [14]. Squares: experimental observations for various
liquids on PDMS. From top to bottom: chloroform, isopropanol,
ethanol, and methanol. Error bars represent uncertainty in ther-
mal conductivity measurements and the dynamic contact angle
during evaporation.

(b) (c) (d)

(a)

FIG. 4. (a) Qualitative depiction of the streamlines observed
inside evaporating droplets on PDMS. Arrows indicate the
direction of circulation for different liquids: upward for isopro-
panol and chloroform, downward for methanol and ethanol. (b)–
(d) Particle deposition patterns resulting from different evapo-
rating fluids on PDMS. In each case, a high concentration of
particles deposited in a central part of the pattern near the
stagnation points of the Marangoni flow. (b) Methanol.
(c) Ethanol. (d) Isopropanol. Scale bar is 0.2 mm.
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The key result, however, is that the direction of circula-
tion varied among the different liquids and was correlated
with the thermal conductivity. For methanol and ethanol
(kR � 1:1 and 1.4, respectively), the particle motion was
observed to be radially inward along the substrate and
radially outward along the air/liquid interface, consistent
with Marangoni flow induced by a positive temperature
gradient along the air/liquid interface (cf. Figure 3, filled
squares). We emphasize that the motion along the substrate
is in the direction opposite of that expected due to mass
loss at the contact line (i.e., in the coffee-ring flow [1] ). In
contrast, for isopropanol and chloroform (kR � 1:7 and
2.0, respectively) the observed circulation was radially
outward along the substrate and radially inward along the
air/liquid interface, again consistent with the theory (cf.
Fig. 3, open squares).

The experiments also indicated that Marangoni flow of
either direction has a pronounced but similar impact on the
resulting particle deposition patterns [Fig. 4(b)–4(d)]. In
the liquids studied here, some fraction of the particles
accelerated into and then adhered to the substrate at the
contact line, in a manner similar to that observed in the
coffee-ring problem [1]. Most particles, however, failed to
reach the contact line, at first approaching it and then
moving away in a manner consistent with the inset stream-
lines in Fig. 3. A fraction of the recirculating particles
tended to subsequently collect at the stagnation points
near the center of the drop (either near the air/liquid inter-
face or near the substrate). As the drop evaporated, the
particles near the stagnation points remained near the
center of the drop, as evidenced by the high concentration
of particles near the center of the dry patterns shown in
Fig. 4(b)–4(d). A similar observation was reported previ-
ously [20] for the case of Marangoni flow directed radially
outward along the substrate (octane on glass, kR  8); our
results show that Marangoni flow directed in either direc-
tion ultimately forces particles toward the center. Aside
from the similar feature of extensive deposition near the
center, however, the detailed structures of the deposition
patterns vary significantly. This observation suggests that
the final pattern depends on a sensitive balance of colloidal
and capillary interactions during the final stages of evapo-
ration. Nonetheless, the Marangoni flows studied here
clearly affect the deposition patterns by forcing particles
toward the drop center. More work will be necessary to
establish quantitatively how the direction and magnitude of
the Marangoni flow affect the details of the particle depo-
sition process.

In summary, we demonstrated experimentally that ther-
mal Marangoni flow in evaporating droplets depends sen-
sitively on the ratio of thermal conductivities of the liquid
and substrate, and we derived quantitative criteria for the
circulation direction and magnitude. The present work
focused on the case where surfactant gradients are negli-

gible, and the agreement between the theory and experi-
ments for the liquids examined here suggests this
assumption is adequate for organic liquids. However, sol-
utal effects are important in other systems [28]; for ex-
ample, they are believed to suppress thermal Marangoni
flow in pure water [14] and to induce strong circulation in
certain biological systems where chemotaxis occurs [29].
The theory presented here serves as a framework for
addressing these more complicated effects.
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