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Electrohydrodynamic Flow and Colloidal Patterning near
Inhomogeneities on Electrodes
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Department of Chemical Engineering, Princeton UniVersity, Princeton, New Jersey 08544

ReceiVed May 7, 2008. ReVised Manuscript ReceiVed July 15, 2008

Current density inhomogeneities on electrodes (of physical, chemical, or optical origin) induce long-range
electrohydrodynamic fluid motion directed toward the regions of higher current density. Here, we analyze the flow
and its implications for the orderly arrangement of colloidal particles as effected by this flow on patterned electrodes.
A scaling analysis indicates that the flow velocity is proportional to the product of the applied voltage and the difference
in current density between adjacent regions on the electrode. Exact analytical solutions for the streamlines are derived
for the case of a spatially periodic perturbation in current density along the electrode. Particularly simple asymptotic
expressions are obtained in the limits of thin double layers and either large or small perturbation wavelengths. Calculations
of the streamlines are in good agreement with particle velocimetry experiments near a mechanically generated
inhomogeneity (a “scratch”) that generates a current density larger than that of the unmodified electrode. We demonstrate
that proper placement of scratches on an electrode yields desired patterns of colloidal particles.

Introduction
Guided patterning of surfaces with colloidal particles is of

interest for use in applications ranging from biosensors,1 lab-
on-a-chip devices,2 optics,3,4 and magnetic data storage.5 To
produce such patterns, our group demonstrated that the distribution
of current across an indium tin oxide (ITO) electrode can be
altered in the presence of an ultraviolet (UV) illumination motif;
during the electrophoretic deposition process, the colloidal
particles aggregate on the regions illuminated by the UV light.6

Although the basis of this colloidal aggregation on the inho-
mogeneities generated by the UV light is not well understood,
the process was thought to be related to the phenomenon of
planar particle aggregation near electrodes in both steady and
oscillatory fields.7,8 The work presented here extends this process
to particle agglomeration on inhomogeneities produced with
physically patterned scratches on ITO and also provides a
fundamental basis for the flows generated that lead into the
colloidal aggregation process.

Trau et al.7,9 studied the aggregation behavior of polystyrene
and gold nanoparticles and proposed that the particles are carried
toward one another by electrohydrodynamic (EHD) flow. In this
model, the particles alter the local electric field near the electrode,
and the action of these perturbations on the electrode polarization
layer yields fluid motion directed toward each particle. Unlike
classical electroosmosis, in which the mobile equilibrium charge
in the fluid balances charge that is chemically bound to

solid-liquid interfaces, here the charge in the fluid is proportional
to the externally imposed potential. The electrical stresses scale
nonlinearly with the field strength, and the resulting flow is
denoted as EHD.10 Other authors use other nomenclature,
including “induced charge electroosmosis”.11 Provided the
particles do not adhere to the electrode, adjacent particles become
mutually entrained in their respective flows and aggregation
ensues. Ristenpart et al.12,13 developed more detailed models
based on the EHD theory and found that measurements of the
aggregation kinetics and direct flow visualization corroborated
the theory for high frequency fields in the absence of faradaic
reactions. Sides and co-workers expanded Trau et al.’s model
for the case of low frequency oscillatory faradaic currents and
found significant dependence on the nature of the electrolyte.14-16

As for steady fields, Solomentsev et al.17,18 proposed an alternative
mechanism based on electroosmotic slip flow on the surface of
the particle. Recent work by Ristenpart et al.19 indicates that
both EHD flow and electroosmotic flow (EOF) contribute
significantly to aggregation in steady fields.

Although most research has focused on flow induced by the
particles themselves, several results indicate that particles are
not the only source of flow near electrodes. Trau et al. noted that
any lateral potential gradient within the electrode polarization
layer will yield fluid motion, and they tested this by preparing
a glass slide half-coated with a thin layer of indium tin oxide
(ITO).9 Upon application of an electric field, particles moved
away from the bare silica and toward the ITO. They interpreted
this result in terms of EHD flow directed from the low field* To whom correspondence should be addressed. Telephone: (609) 258-
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strength region (the glass) toward the high field strength region
(the conductive ITO). Similarly, Yeh et al. used photolithography
to prepare an electrode coated with alternating stripes of a thermal
oxide layer, and they showed that application of an electric field
induced particles to aggregate preferentially on the areas of low
oxide thickness.20 They also concluded that the particles migrated
toward areas of higher electric field strength, and they proposed
an EHD mechanism similar to that of Trau et al. Subsequently,
patterned electrodes with large grooves have been used to place
particles in desired locations.21-23 Strikingly, Brisson and Tilton
reported that a “circular asperity” on the counter electrode induced
yeast cells to aggregate preferentially underneath the asperity on
the working electrode,24 suggesting that the inhomogeneity need
not be immediately adjacent to the electrode where the particles
reside for preferential aggregation to occur.

The above examples used physical inhomogeneities to induce
a local increase in field strength. In contrast, in the work by
Hayward et al. on patterning with UV light, it was proposed that
the UV light increases the rate at which electrons are promoted
from valence to conduction bands within the semiconductive
ITO.6 This then yields a higher ionic current density in the fluid
adjacent to the illuminated region, resulting in fluid motion
directed toward the illumination. Flows induced by instabilities
might also occur without any inhomogeneities present in the
system, provided the current density is above the limiting
current;25 the colloidal aggregation experiments relevant here
are typically performed well below the limiting current.

Although Trau et al.’s EHD mechanism is consistent with
observations of particle motion toward regions of higher field
strength, the theory has not been elaborated to provide quantitative
information about the flow structure. Trau et al. performed
numerical calculations of the flow induced on an electrode with
a spatially sinusoidal current density,9 but they assumed that the
fluid is electroneutral to leading order and did not elaborate for
other geometries. Pundik et al.26 obtained qualitatively similar
streamlines for the case of a nonflat electrode with an oscillatory
height profile; for surface roughness on the order of nanometers,
such flows should be negligible. Nadal studied the inverse problem
where a thin dielectric strip is placed on a conductive electrode
subject to an oscillatory field, and they proposed a model based
on lateral gradients in the surface capacitance of a thin layer
adjacent to the electrode.27 They performed particle tracking
experiments, and found satisfactory agreement with their theory,
but the results are not directly applicable to gradients in electric
field strength in steady (DC) fields with faradaic currents.

In this work, we present a more detailed investigation of the
EHD flow induced near inhomogeneous electrodes in steady
fields. The key (and perhaps counterintuitive) result is that the
free charge in the double layer decreases in regions of higher
current density, yielding a potential gradient directed toward the
region of higher current density that provides the body force
driving fluid motion. This result serves as the basis for a scaling
expression describing the EHD flow velocity, wherein the
electrode is modeled as a physically flat surface of constant
potential but with varying current density. According to the model,
the EHD velocity is linearly proportional to both the applied

potential and the difference in current density between two
adjacent regions, directed toward the region of higher current
density (Figure 1).

The paper is organized as follows: First, approximate scaling
expressions are derived for the magnitude of the EHD flow in
the context of the standard electrokinetic theory. The structure
of the flow is then investigated via exact analytical solutions for
the potential distribution and flow field, derived for the case of
a spatially oscillatory current density along the electrode. Simple
asymptotic expressions are obtained in various limiting regimes;
for example, in the limit of thin double layers and long perturbation
wavelengths, the lateral velocity varies quadratically between
the electrodes. Since the governing equations are linear, current
perturbations of different wavelengths can be superimposed (via
a Fourier series) to generate arbitrary current distributions and
their corresponding flow patterns. For the case of a thin strip of
higher current density, two counter-rotating rolls are generated
around the edges of the strip with the flow directed toward the
strip along the electrode, consistent with the scaling theory and
previous experimental observations.

Next, to test the model, we use video microscopy to conduct
particle velocimetry experiments near “scratches” on ITO
electrodes, where the scratches are produced by lightly dragging
a razor blade across the ITO surface. Velocity profiles calculated
from particle trajectories are in good agreement with the
theoretical model, using one electrochemical fitting parameter.
Although the electrochemistry associated with the scratches is
not well characterized, scanning electron microscopy (SEM) and
atomic force microscopy (AFM) images suggest that the granular
ITO film undergoes densification within the scratch and that the
surface roughness is decreased. Consequently, the ITO surface
is more conductive locally, consistent with the increased current
density observed experimentally.

Finally, we demonstrate that proper placement of scratches on
the electrode yields a desired pattern of colloidal particles on the
electrode, and we discuss how this approach can serve as the
basis for fabrication of more complicated patterns.

Theory

Governing Equations. The theory is based on the standard
electrokinetic model as set out by Russel et al.,28
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Figure 1. Sketch showing an electrode with different current densities
in adjacent regions. The potential drop across the charge polarization
layer is smaller in the region of higher current density, creating a lateral
electric potential gradient and resulting in EHD flow toward the higher
current density region. Note that the electric field E is not imposed
externally but is the consequence of two adjacent regions with different
current densities.
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Here, P is pressure, e is the charge on a proton, ni is the number
density of ions with valence νi and diffusivity Di, E ) -∇ φ is
the electric field strength, µ is the viscosity, u is the fluid velocity,
kBT is the product of Boltzmann’s constant and the absolute
temperature, ε is the dielectric constant of the liquid, and ε0 is
the permittivity of free space. Equation 1 represents the
momentum balance in the limit of negligible inertia, with an
electric body force term. The number densities of ions are related
to the electric potential through Gauss’s equation (eq 4) and also
by the conservation relation expressed in eq 3. Here, the flux of
ions is prescribed by the Nernst-Planck equation; the three terms
on the right-hand side of eq 3 represent diffusion, electromigration,
and convection, respectively.

This model has been studied in detail for isolated spheres,29,30

and it served as the starting point for analyses of particles near
electrodes in oscillatory12,13 and steady fields19 by Ristenpart et
al. Here, we use the model in the steady-field situation (with a
faradaic flux) to analyze the effect of lateral perturbations in the
current density along the electrode. The unperturbed case has
been described previously;19 we briefly summarize that analysis
before analyzing the effects of lateral perturbations in the current
density.

Two parallel electrodes, separated by a distance 2H with the
center line at y ) 0, are subjected to a steady potential difference
∆φ. In the absence of lateral (x-direction) perturbations,
the velocity is zero everywhere and osmotic pressure balances
the electrostatic body force. The flux of ions at each electrode
depends on the nature of the electrochemical reactions; for
convenience, we assume that a monovalent charged species is
produced and consumed at the respective electrodes and that its
concentration is much less than that of a monovalent supporting
electrolyte. (This situation is typical of water electrolysis, one
of the main reactions studied experimentally.) Denoting
species 1 as the cationic ion involved in the electrochemical
reaction, the flux according to the Nernst-Planck equation is

If ) ej1 )-eD1

dn1

dy
-

e2D1n1

kBT
dφ

dy
(5)

where If is the current resulting from the faradaic reactions at the
electrodes. The fluxes of the other ionic species, which are neither
consumed nor produced at the electrodes, are identically zero.
The current density If depends on a number of factors, including
the applied potential, the type of electrodes, and the ionic
concentrations,31 but we generalize the treatment by treating the
current as an independent parameter rather than restricting our
analysis to any specific kinetic model. We emphasize that the
current is not truly independent of the applied potential (and is
clearly constrained by the sign of the potential and the limiting
current), but a more detailed model is not necessary to determine
the resulting hydrodynamics. As discussed by Ristenpart et al.,19

the transient nature of potentiostatic and galvanostatic systems
may be neglected if the characteristic time scale for the
electrochemistry obeys the inequality t/.H2/Di, which is satisfied
for most systems of interest.

The remaining boundary conditions involve specification of
the potential at each electrode and a symmetry condition such

that the charge density vanishes at the center line (which prevents
the formation of asymmetrical charge distributions in steady-
state systems). Linearization following the procedure outlined
previously19 yields the solution

φ) ∆φ
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H
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Here, the Debye length is κ-1 ) (εε0kBT/2e2n2
∞)1/2, and the bulk

conductivity is σ∞)2e2D1n2
∞/kBT. Several features of the potential

and charge distributions deserve mention. The first term in
eq 6 is equivalent to the Goüy-Chapman model28 between
parallel plates, with the potential decaying exponentially near
each electrode. For κH .1 and absent a faradaic reaction, the
potential drop occurs entirely across the polarization layers near
the electrodes, and the electric field strength in the bulk is zero.
The second term describes the effect of the faradaic current on
the potential. For applied potentials above the redox potential,
If is nonzero and the field strength well away from the electrodes
is approximated by Ohm’s law,

E)-dφ

dy
=

If

σ∞
, yf 0 (8)

Although the faradaic current increases the electric field strength
outside the polarization layers, inside the layers the opposite is
true: the field strength (and charge density) decreases as the
current is increased (Figure 2). Near the positive electrode, positive
ions are injected by the faradaic flux into the negatively charged
polarization layer, decreasing the total charge (and field strength).
At the opposite electrode, positive ions are removed from the
positively charged polarization layer, again decreasing the charge
and field strength. As we shall see, the decrease in potential with
increasing current provides the necessary field imbalance to drive
EHD flow between regions with different current densities. For
κH . 1, the (area) charge density in the polarization layer near
each electrode is

q)-εε0
dφ

dy
= ( εε0κ(∆φ

2
-

If H

σ∞
), yf (H (9)

Scaling Analysis for EHD Flow. To examine the EHD flow
arising from a current inhomogeneity on an electrode, we follow
an analysis similar to that used for spherical colloids in steady

(29) O’Brien, R. W.; White, L. R. J. Chem. Soc., Faraday Trans. 2 1978, 74,
1607–1626.

(30) Delacey, E. H. B.; White, L. R. J. Chem. Soc., Faraday Trans. 2 1981,
77, 2007–2039.

(31) Newman, J. Electrochemical Systems, 1st ed.; Prentice-Hall: Englewood
Cliffs, NJ, 1973.

Figure 2. Dimensionless electric potential between parallel electrodes
for a steady applied potential difference resulting in different faradaic
current densities: solid line, If ) 0; dotted line, If ) 100 µA/cm2. The
potential drop across the polarization layer is smaller for the higher
current density. Inset: the dimensionless potential across the entire cell,
showing that the potential drop occurs mostly over the polarization
layers near each electrode (not resolvable at this scale). Parameters:
κ-1 ) 10 nm, H ) 100 µm, and ∆φ ) 1 V.
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fields.19 Variations in the faradaic current density at the electrode
perturb the otherwise uniform field, inducing a force on the charge
in the polarization layer and creating flow. The relation between
the tangential electrical stresses and velocity is expressed by the
Helmholtz-Smoluchowski equation for steady electroosmosis
in a diffuse layer along a rigid, charged interface.28 Within the
charge layer, electrical stresses are balanced by viscous shear,
while outside the Debye layer the fluid velocity asymptotes to
the Helmholtz-Smoluchowski value,

u/)
εε0∆φ

µ
Et (10)

Here, ∆φ is the electrostatic potential at the electrode solid-fluid
interface and Et is the tangential component of the applied electric
field. For a negatively charged surface, ∆φ < 0, and the action
of the field on positively charged counterions produces fluid
motion in the direction of the field. It is useful to rewrite this
expression using Gauss’s law to relate the potential gradient and
q, the total charge per unit area in the diffuse layer, as a balance
between the electric and viscous stresses on the Debye scale, that
is,

µ u/

κ
-1

)-
εε0�

κ
-1

Et ) qEt (11)

According to eq 11, the induced velocity is proportional to the
electrical stress per unit area, qEt.

As a first approximation for the EHD flow, we assume that
an otherwise homogeneous electrode has a region where the
local current density is increased (or decreased) by a factor
δ ≡ If

(2)/If
(1) over a width ∆x. The exact mechanism that produces

the current difference is unimportant, provided that the electrode
surface remains geometrically flat and is an equipotential. (Note
that for perfectly conductive electrodes, the electric field within
the electrode itself is identically zero and the potential is uniform.)
A more detailed analysis would include the effects of thin
insulating layers of varying thickness or capacitance across the
electrode, but here we focus on the simplest case possible to
elucidate the underlying physics.

In general, convection affects the ion concentration, but we
limit our analysis to situations where the Péclet number is small,
Pe ) uH/D , 1. When this condition is satisfied, and if the
current densities in both regions are small enough such that
If ,σ∞∆φ/2H, then by eq 9 the charge density along the electrode
is approximately

q ∼ - εε0κ∆φ ⁄ 2 (12)

To estimate the tangential electric field, we neglect the
interaction between the two regions and approximate the potential
in each region using eq 6. The tangential field is then

Et ∼ - (φ2 - φ1

∆x ) ∼ -1
∆x [ If H

σ∞
( y
H
- sinh κy

sinh κH)-
δ

If H

σ∞
( y
H
- sinh κy

sinh κH)] (13)

yielding

Et ∼ (δ- 1)
If H

σ∞∆x
(14)

We ignore the y-dependence to focus on the scaling. Note that
the component of the potential proportional to ∆φ in eq 6 canceled
out, leaving only the difference in potential due to the varied

current density. Combining eqs 11, 12, and 14, it follows that
the tangential EHD velocity scales as

u · t ∼ (δ- 1)
εε0∆φIf H

2µσ∞∆x
(15)

The flow is proportional to the product of the potential and current
and is directed toward the region with the larger current density.
For δ> 1, the flow is directed toward region 2, otherwise toward
region 1. If the currents are equal (δ)1), no flow occurs. Although
the applied potential and current density are signed quantities,
they are not independent. The direction of the flow is unchanged
upon reversal of the polarity, consistent with the designation of
the flow as electrohydrodynamic. Substitution of magnitudes typi-
cal for water electrolysis yields the velocity u ≈ 345(δ - 1) µm/s,
indicating that small current density variations yield significant
flows. (For our experiments with deionized water, σ∞ ≈ 1 µS/cm,
∆φ ≈ 1 V, If ≈ 1µA/cm2, H ≈ 100 µm, and we estimate
∆x ≈ 10 µm.)

Two aspects of eq 15 deserve attention. First, the magnitude
of the EHD flow necessarily changes with time, since the applied
potential and current density cannot simultaneously be held
constant (because electrochemical cells are either potentiostatic
or galvanostatic). For example, under potentiostatic conditions,
the current typically decreases with time, so the observed fluid
velocity will decrease in tandem. The flow is pseudosteady,
however, provided t/ . H2/Di. Second, the EHD flow scales
nonlinearly with the electric field strength, but the degree of
nonlinearity depends on the functional relation between the
applied potential difference and the corresponding current density.
For applied potentials near the redox potential, the current varies
linearly with the potential so the resulting EHD flow scales as
E2, but for larger potential differences the current often varies
exponentially (e.g., the Tafel equation). In this situation, the
EHD flow scales as E log E.

Perturbation Analysis. To investigate the flow structure
around current inhomogeneites, we use a perturbation method
following the approach employed by Trau et al.9 The key
difference is that here we are armed with an exact solution to
the (linearized) governing equations for the unperturbed potential
distribution between the electrodes, whereas Trau et al. assumed
the fluid was electroneutral to leading order.9 This allows us to
obtain an exact analytical solution for the flow streamlines for
arbitrary values of κH and the perturbation wavelength.

As in the unperturbed case, we examine two electrodes
separated by a distance 2H, with y ) 0 at the center line. In the
limit of low Péclet number, the potential distribution is uncoupled
from the hydrodynamics; thus, we solve the electrostatics and
hydrodynamics sequentially. The electrostatic governing equa-
tions (eqs 3 and 4) and potential boundary conditions remain
unchanged, but we assume that the current density is subject to
a spatially oscillatory perturbation,

ej1 · n) If + Ĩf eiλx (16)

Here, λ) 2π/L, with L being the wavelength of the perturbation.
Accordingly, the potential and charge densities are

φ(x, y)) φ(y)+ φ̃(y) eiλx

ni(x, y)) ni(y)+ ñi(y) eiλx (17)

Choosing scaling parameters φ̃ ∼ kBT/e, ñi ∼ ni
∞, y ∼ H,

x ∼ λ-1, and Ĩf ∼ eD1n2
∞/H, upon linearization (i.e., neglecting

terms proportional to the product φ̃ñi) the dimensionless governing
equations for the perturbation variables simplify to
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Here, ñ ≡ (n1
∞/n2

∞)ñ1 + ñ2 - ñ3 is the dimensionless total ion
density. The boundary conditions for the perturbation variables
are

φ̃) 0, y) ( 1 (20)

-2
∂φ̃

∂y
- ∂ñ

∂y
) Ĩf , y)-1 (21)

ñ) 0, y) 0 (22)

The final boundary condition prevents asymmetrical charge
distributions in steady-state systems.

Integration of eq 18 allows solution of eq 19 by variation of
parameters, and application of boundary conditions 20-22 yields
the dimensionless potential and density

φ̃)
Ĩf

2λH[tanh(λH)
sinh(y�)
sinh(�)

- sinh(yλH)
cosh(λH) ] eix (23)

ñ)-
Ĩf

λH[tanh(λH)
sinh(y�)
sinh(�) ] eix (24)

where �2 ≡ (κH)2 + (λH)2. As in the unperturbed case, for
κH . 1, the charge density perturbation decays exponentially
in the polarization layer near each electrode. The potential
dependence is complicated by the second length scale λ-1, but
for λH . 1, the potential drop is largely confined to the
polarization layers as well.

Next, we address the hydrodynamics using the Stokes equations
modified by an EHD body force, compare eqs 1 and 2. Because
the problem is two-dimensional, we employ a stream function
defined as

ux )
∂Ψ
∂y

, uy )- ∂Ψ
∂x

(25)

Ψ(x, y))Ψ(y) eiλx (26)

Substitution of eq 26 into eq 1 yields the inhomogeneous fourth
order equation

Ψ′′′′ - 2(λH)2Ψ″ + (λH)4Ψ)
iλH[(φ̃″ - (λH)2

φ̃)φ′ - φ̃φ′′′ ] (27)

where the stream function has been scaled by Ψ ∼ εε0(kT/e)2/η
and the primes denote differentiation with respect to y. Note that
the right-hand side of eq 27 involves only known functions of
y, so variation of parameters may be employed. Enforcing no-
slip and no-penetration boundary conditions at the electrodes
yields

Ψ)Ψ ′ ) 0, y) ( 1 (28)

The solution for the stream function to leading order is

Ψ)C1 sinh(yλH)+C2y cosh(yλH)+K1 sinh(y�)+
K2 cosh(yλH) sinh(yκH)+K3 sinh(yλH) cosh(yκH) (29)

where the constants C1, C2, K1, K2, and K3 are lengthy expres-
sions that depend on the system parameters (i.e., λH, κH, ∆φ, If,
and Ĩf). The full details are presented in the Supporting
Information. Clearly, the general solution is quite complicated,
so we gain intuition by examining specific limiting regimes.

Under typical experimental conditions, the Debye length is on
the order of tens of nanometers, while the electrode separation
may be micrometers to millimeters, so κH . 1. If the homo-
geneous current density satisfies the inequality If , σ∞∆φ/2H, then
terms proportional to the homogeneous current density If are
negligible. Under these conditions, it is instructive to examine
two limits for the perturbation wavelength. For very long
wavelengths (λH , 1), eq 29 simplifies (in dimensional terms)
to

Ψ ≈ i
εε0∆φĨf λH2

8ησ∞
( y3

H3
- y

H)eiλx (30)

with corresponding x-velocity

ux ≈ i
εε0∆φĨf λH

8ησ∞
(3y2

H2
- 1)eiλx (31)

Note that the prefactor in this latter expression matches the scaling
predicted by eq 15, with ∆x ) λ-1. Representative streamlines
are presented in Figure 3A. Two counter-rotating rolls bisect the
cell, with the flow along the electrodes directed toward the regions
of highest current density. The x-velocity varies quadratically
across the cell, with nonzero values at the electrodes. The

Figure 3. Streamlines for EHD flow between parallel electrodes subject to a spatially oscillatory perturbation in faradaic current density, in the thin
double layer limit (κH) 103). Arrows indicate direction of flow. (A) Long wavelength, λH) 10-2. Periodic counter-rotating rolls bisect the electrodes,
with flow directed along the electrodes toward the regions of maximum current density. (B) Short wavelength, λH ) 10. Periodic counter-rotating
rolls again bisect the electrodes, but the centers of circulation are closer to the electrodes.
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approximate solution correctly captures the maximum magnitude
of the flow near the electrode but misses the exponential decay
within the double layer (Figure 4A, inset).

In the opposite limit of very short wavelengths, an approximate
solution is obtained for the regime where κH . λH . 1. In this
case, eq 29 simplifies to

Ψ ≈ i
εε0∆φĨf H

4ησ∞
((y ⁄ H) cosh(λy)- sinh(λy)

cosh(λH) )eiλx (32)

and the x-velocity is

ux ≈ i
εε0∆φĨf λH

4ησ∞
((y ⁄ H) sinh(λy)- cosh(λy)

cosh(λH) )eiλx (33)

As in the long wavelength case, the flow near each electrode
is directed toward the regions of highest current density
(Figure 3B), but the magnitude of the flow decays rapidly away
from the electrodes. The velocity is essentially zero outside
distances from the electrode much greater than λ -1. The
approximate solution accurately captures the shape of the velocity
but again misses the rapid decay to zero within the charged layer
(Figure 4B, inset). For the sake of completeness, we list asymptotic
expressions for other limiting regimes in Table 1. Note, however,
that many of these regimes are difficult to achieve experimentally.

A key feature of the preceding model is that the governing
equation for the flow is linear (to leading order) with respect to
the current density inhomogeneity. Consequently, we are free to
superimpose current inhomogeneities with different wavelengths
and magnitudes to investigate the flow resulting from specified
current density patterns. Of most interest experimentally is the
flow around a step inhomogeneity in current, of the form

Ĩf (x)) { ∆If , -w < x < w

0, |x| > w
(34)

In other words, the current density perturbation has magnitude
∆If inside a strip of width 2w and is zero elsewhere. To mimic
this current density profile, we construct a rectangular wave using
a Fourier series, namely

Ĩf ⁄ ∆If )
w
L
+∑

n)1

ntot
2

nπ
sin(nπw

L ) cos(nπx
L ) (35)

where L is the period of the waveform. Although this waveform
is periodic, the choice of a sufficiently large period such that
L . w yields a flow near each inhomogeneity that is insensitive
to L, that is, the waveform locally mimics the effect of a single
inhomogeneity. Substitution of eq 35 into eq 29, and identifying
λ) nπ/L, yields a closed form analytical expression for the EHD

Figure 4. Dimensionless lateral (x-direction) velocities versus vertical position. Velocities extracted from the stream functions displayed in Figure
3, evaluated at λx ) -π/2 with κH ) 103. Positive velocities are in the positive x-direction. (A) Long wavelength, λH ) 10-2. The flow varies
quadratically between the electrodes; the exact velocity and asymptotic approximation (eq 31) are not differentiable at this scale. Inset: the exact
(solid line) and asymptotic (dotted line) velocities very close to the electrode. The asymptotic expression misses the sharp decay to zero in the charge
polarization layer. (B) Short wavelength, λH ) 10. The flow varies between the electrodes following eq 33, which again is not differentiable at this
scale from the exact solution. Inset: exact (solid line) and asymptotic (dotted line) velocities very close to the electrode.

Table 1. Asymptotic Expressions for the Stream Function Derived from eq 29 and the Corresponding x-Direction Velocitya

a All expressions are valid in the limit If , σ∞∆φ/2H. 〈Ψ〉 ≡ iεε0∆φĨfHeiλx/µσ∞ and 〈u〉 ≡ λ〈Ψ〉 .
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streamlines. For w/L ) 10-2, the solutions typically converged
for values of ntot ) 100.

Figure 5 displays the predicted velocity profiles near a step
current heterogeneity on the electrode surface. Two counter-
rotating cells bisect the vicinity of the step heterogeneity, with
the flow directed inward along the electrode surface. For
sufficiently small heights above the electrode surface, fluid motion
is directed toward the strip, while at larger heights the colloids
are swept away (Figure 5B). Thus, colloids confined to the
immediate vicinity of the electrode (i.e., by the electric field) are
swept toward the current inhomogeneity.

Note that the direction of flow is controlled by the respective
magnitudes of the current density inside and outside of the strip.
If the current density were smaller in the strip compared to
the rest of the electrode, then the shape of the streamlines in
Figure 5A would be unchanged but with opposite direction.

Experimental Verification

Our theoretical results were tested by particle velocimetry
experiments near “scratches” on glass slides coated with ITO
(Delta Technologies, Rs ) 4-8 Ω). Before each experiment, the
ITO electrodes were cleaned by sonication in RBS detergent,
thorough rinsing, and subsequent sonication in deionized water
(Picopure). The aqueous colloidal polystyrene (PS) suspensions
were purchased from Interfacial Dynamics Corporation, diluted,
and cleaned by repeated centrifugation and dilution cycles with
deionized water. The resulting conductivity of the suspension
was 1 µS/cm.

Our experimental setup consisted of two parallel ITO
electrodes. The distance between these was controlled by the
thickness of a poly(dimethylsiloxane) (PDMS) spacer, which
also confined the colloidal suspension in the space between the
electrodes. Typical thicknesses ranged from 100 to 500 µm.
Prior to the experiment, the bottom electrode was lightly scratched
with a razor blade (cf., Figure 6A), while the top electrode was
left unmodified. Power was supplied to the electrodes using a
potentiostat (Princeton Applied Research), which allowed for

simultaneous application of a potential and recording of the
resulting current as a function of time. Comparative experiments
with scratched and nonscratched electrodes indicated that the
total current density on a scratched electrode was increased by
a factor of 2 compared to unmodified electrodes (possible
explanations for this will be given below).

Upon application of the field, particles immediately began
moving laterally toward the scratch. After reaching the scratch,
the particles typically became “stuck”, that is, irreversibly adhered
to the electrode, resulting in the preferential coverage of the
scratched surface area (Figure 6B,C). Note that the electric field
was oriented so that the negatively charged particles were attracted
toward the electrode. Apparently, the field strength over the
majority of the electrode was insufficient to induce sticking,
whereas the higher electric field strength was sufficiently large.
Likewise, this electrophoretic attraction and capture prevented
the particles from moving upward, so recirculation up and away
from the scratch was not observed.

To compare the experimentally obtained particle trajectories
and the theoretical model described above, particle trajectories
were analyzed using standard image analysis techniques in
MatLab. The magnitude of the average particle velocity is plotted
as a function of the lateral distance from the center of the scratch
for different applied potentials in Figure 7. The particles clearly
accelerate as they approach the scratch, qualitatively consistent
with the streamlines shown in Figure 5. The solid lines show the
theoretical predictions, using δ as the sole fitting parameter. The
good agreement between experiment and theory is slightly
impaired by an asymmetry in the experimental data for an applied
potential of 1.75 V. This asymmetry might be caused by a small
bulk electrolyte flow superimposing the flow pattern generated
by the presence of the scratch. Likewise, the motion of particles
less than 10 µm away from the center of the scratch could not
be analyzed because particles tended to stick to the electrode
surface across the whole width of the scratch (approximately
20 µm). Accordingly, the decrease in velocity close to the center
of the scratch is not reflected in the experimental data. Nonetheless,

Figure 5. (A) Streamlines for EHD flow near a current inhomogeneity. The shaded region denotes the strip of width w in which the faradaic current
is increased by a factor δ. A long-range flow is directed along the electrode toward the higher current density region. (B) Dimensionless lateral
(x-direction) velocities, normalized by Ĩf, evaluated at y/H ) 0.995 (solid line) and y/H ) 0.97 (dotted line). Parameters: κH ) 103, L/H ) 0.5, and
w/H ) 10-2.
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the model appears to capture the experimentally observed
velocities everywhere else outside of the scratch.

Although the theoretical and experimental streamlines accord,
some of the underlying details remain unclear. Most importantly,
the model predicts that the velocity is proportional to the product
of the applied potential and the current density difference, but
this latter quantity could not be measured independently in our
experimental setup. Moreover, the mechanism driving the increase
in current density within the scratched surface area is not yet
fully understood. Preliminary measurements with AFM indicate
that the act of dragging or pressing the razor blade into the ITO
causes a local densification and smoothing of the granular ITO
(Figure 8A,B). The ITO film has a granular structure due to its
fabrication process. Thus, the pressure exerted by the razor might
yield local densification resulting in increased contact between
the grains and thus increased surface conductivity and charge
transport through the electrode-electrolyte interface. An alterna-

tive explanation could be the removal of an insulating surface
layer during the scratching process.

Regardless of the electrochemical details, the end result is that
the current is dramatically increased (Figure 8C). When the
applied electrical field was ramped from 0 to 3 V, an increase
in current was observed as expected, but an electrode with a
single scratch produced a current roughly twice as large as an
unmodified electrode. Since the scratched area comprised a small
fraction of the electrode area (at least, in terms of projected area),
the local current density on the scratch must have been
proportionally larger. For a 1 cm diameter electrode and a 20 µm
wide scratch spanning the electrode, a crude estimate based on
projected areas indicates that the current density is approximately
400 times greater in the scratch. The “electrochemical area” is
typically much larger than the projected area because of surface
roughness; however, effective electrode areas are typically
measured using chronoamperometry on a redox species with a
known diffusion coefficient.32 This technique does not help
identify the two different current densities here, since there is
only one piece of information (the total current) but two unknown
areas. More elaborate techniques will be necessary to measure
the true current density versus position along the electrode.

A key observation is that if the pressure exerted on the razor
was sufficiently large, then the ITO was completely “scraped”
off of the glass substrate and no particle agglomeration was
observed in the scratch. Rather, particles tended to accumulate
at the edges of the scratch (data not shown). This behavior is
consistent with the EHD model set forth here because the removal
of the conductive layer necessarily causes the current density to
vanish. Further work is necessary to elucidate optimal pressures
for maximizing the increase in current density and the corre-
sponding particle aggregation.

Although the electrochemical details are not well characterized,
a key aspect of this phenomenon is the ease with which particles
may be placed in desired locations and the ordering of particles
that results there. After arriving at the scratch, the particles formed
polycrystalline patches on the electrode surface (Figure 6C),
consistent with particle-scale EHD and electroosmotic flows

(32) Kissinger, P. T.; Heineman, W. R. Laboratory Techniques in Elec-
troanalytical Chemistry, 2nd ed.; Marcel Dekker: New York, 1996.

Figure 6. Preferential aggregation of particles along a scratch. Particles
are 2.7 µm polystyrene suspended in deionized water with applied
potential ∆φ ) 0.8 V. Particles are white; scratch is dark. Scale bar is
30 µm. (A) Prior to application of the field, the particles are randomly
dispersed. (B) At 30 s after application of the field, the particles have
moved toward and aggregated preferentially along the scratch. (C) At
120 s after application of the field, the scratch is almost entirely covered
by particles.

Figure 7. Comparison of experimental and predicted velocity profiles.
A suspension of 2.4 µm PS particles in DI water was used. The applied
potentials of 1.75 and 1.5 V correspond to electric fields of 33.0 V/cm
and 28.3 V/cm, respectively. The measured current densities were
1 µA/cm2 and 0.6 µA/cm2, while the fit current density increases within
the scratch were 0.07 µA/µm2 and 0.02 µA/µm2 respectively.
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which result in particle attraction and aggregation.19 To achieve
this result, we emphasize that nothing more than scratching the
electrode lightly with a razor blade was required. This observation
suggested that strategic placement of scratches on an electrode
could be used to create arbitrary patterns of particles.

To test this idea, we patterned an ITO electrode with a regular
lattice of scratches. This was accomplished simply by pressing
a bundle of razor blades into the ITO, rotating the bundle by 90°,
then pressing the bundle into the ITO again. In this fashion, a
grid-shaped network of scratches was formed on the ITO. During
an aggregation experiment, colloidal particles were attracted to
the scratch pattern and formed close-packed polycrystalline layers
on the surface (Figure 9). The particles thus assemble in predefined

geometries on the electrode, suggesting that this approach will
be useful for patterning electrodes with colloids.

Conclusions

We investigated EHD fluid motion near current heterogeneities
on electrodes, and we demonstrated theoretically that the flow
velocity is proportional to the applied voltage and the difference
in current density. Streamlines of the flow were derived
analytically for the case of a spatially oscillatory perturbation in
current, and by appropriate superposition streamlines for the
flow near a step heterogeneity (i.e., a scratch) were obtained. Our
theoretical streamlines are in quantitative agreement with
experiments using suspensions of PS particles in DI water with
scratched ITO electrodes, with the use of one fitting parameter.
More rigorous testing of the model will benefit from experimental
measurements of the current density distribution along the
electrode surface, and many details remain to be elaborated in
regard to the electrochemical mechanism by which the current
density is increased in the scratch. Nonetheless, the approach
described here offers a simple method for placing particles in
desired locations on electrodes.
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Figure 8. Atomic force microscopy images of a scratched ITO electrode
and current response of scratched and unmodified electrodes. (A) Low
magnification image. The darker region is the scratch. The horizontal
profile below the image shows that the scratch is about 10 nm deep. (B)
Higher magnification image of the left side of the scratch. Note that the
average grain size in the unmodified region is smaller, while within the
scratch the grains are larger, presumably due to compaction by the razor.
(C) Current as a function of the applied voltage. Compared to an
unmodified electrode (no scratch), the total current is almost doubled
after a single scratch. Each experiment was performed twice (markers
not differentiable at this scale).

Figure 9. Optical microscopy image of 2.7 µm polystyrene particles
aggregated preferentially on a network of scratches on an ITO electrode.
Scale bar is 40 µm. Inset shows lower magnification of the same pattern.
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