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We investigate a new type of behavior whereby small vesicles orbiting around a larger vesicle in a toroidal
electrohydrodynamic flow undergo dynamic angular segregation. Application of a low frequency (∼50Hz) electric field
induces aggregation of adjacent unilamellar vesicles near the electrode, in a manner similar to that observed with rigid
colloidal particles. For polydisperse vesicle suspensions, however, small vesicles (<10 μm) are often observed to “orbit”
around larger vesicles (>20 μm) in a toroidal electrohydrodynamic flow field. While orbiting, the smaller vesicles
gradually segregate into well-defined angular cross sections. Viewed from above, the vesicles appear to form dynamic
“bands” at prescribed angles, separated by regions devoid of vesicles. We interpret the angular segregation in terms of
induced dipolar interactions, and we propose a model based on point dipoles rotating in a cellular flow field. We
demonstrate that the model yields a surprisingly diverse range of vesicle trajectories, including many that are
qualitatively consistent with the experimental observations.

Introduction

Electrohydrodynamic (EHD) flows,1 also known as induced-
charge electroosmotic flows,2 are known to cause colloidal
particles to aggregate near electrodes.3,4 The applied electric field
polarizes the colloidal particles, and the dipole field around each
colloid generates a tangential electric stress in the charge polari-
zation layer near the electrode. This stress generates a toroidal
EHD flow field around each colloid (cf. Figure 1A), and adjacent
particles are mutually entrained in their respective flow fields,
resulting in planar aggregation on the electrode. Because the
particle dipole field and the charge density in the electrode
polarization layer both scale with the magnitude of the applied
fieldE, the resultingEHD flow typically scales as the square of the
applied field.3,4 The generation of an EHD flow around colloids
near electrodes has been investigated under many different
circumstances, and we refer the interested reader to the work by
Saville and colleagues5,6 or by Hoggard et al.7 for examples and
references therein.

Almost all of the experimental work to date, however, has
focused on rigid and monodisperse colloidal particles. We re-
cently demonstrated8 that similar EHD flow and aggregation also
occurs around unilamellar phospholipid vesicles, which are self-
assembled, spherical molecular bilayers that separate a well-
defined internal volume from the external environment. In our
case we generated vesicles via electroformation, yielding vesicle
diameters ranging from approximately 1 to 50 μm. Although the

vesicles are filled with an aqueous solution, the presence of the
membrane allows accumulation of charge and the consequent
establishment of a dipolar field around the vesicle, thereby inducing
EHDflows along the electrode in the samemanner as solid colloids.
Unlike previous observations with solid colloids, however, the
behavior of the vesicles was highly sensitive to the size of adjacent
vesicles. For similarly sized vesicles, they simply aggregated along
the electrode intoplanar clusters in the samemanner as observed for
monodisperse colloids. For sufficiently large size disparity, though,
one of two behaviors was observed: lifting or orbiting. In the lifting
behavior, the smaller vesicles (<∼10 μm) tended to aggregate into
clusters underneath a larger vesicle (>20 μm), thereby “lifting” the
large vesicle away from the electrode. We demonstrated8 that this
behavior could be exploited to effectively separate the largest
vesicles preferentially from the smaller ones, something which is
difficult to do by conventional methods (e.g., filtration or cen-
trifugation) because of the fragility of the vesicles.

Oftentimes, however, we observed the “orbiting” behavior,
which was characterized by the smaller vesicles moving in well-
defined circulatory “orbits” around the larger vesicle (Figure 1a).
Qualitatively, it appeared that the smaller vesicles were following
the EHD streamlines induced by the larger vesicle, but surpris-
ingly the smaller vesicles tended to align at preferred azimuthal
angles. Although the vesicles continued to circulate with the EHD
flow (i.e., in the poloidal direction), large regions became depleted
of vesicles. Viewed from above, the vesicles appeared to form
dynamic “bands” orbiting at prescribed azimuthal orientations. It
was unclear why they should form bands, and it was unclear why
occasionally a set of orbiting vesicles would suddenly and
simultaneouslymove underneath the larger vesicle, thereby lifting
it up. Since the orbiting behavior is undesirable in regard to
maximizing the separation efficiency, we sought to understand
why the vesicles undergo orbiting versus lifting.

The main goal of this paper is to demonstrate that the angular
segregation observed during orbiting is explicable in terms of a
competition between drag induced by the EHD flow and dipolar
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interactions between the orbiting vesicles. Toward this end, we
develop a simplifiedmodel that approximates the vesicles as point
dipolesmoving in a cellular flow field.Despite the simplicity of the
model, a strikingly diverse collection of steady-state trajectories is
observed, and several of the calculated trajectories mimic those
observed experimentally.

The paper is organized as follows. We begin by briefly des-
cribing the experimental observations, and thenwe develop a two-
dimensional model for the case of two point dipoles interacting in
a cellular flow field. Their behavior is mapped for a wide range of
dimensionless parameter space, and we use those results to
expand the model to interactions between N point dipoles in a
full three-dimensional toroidal flow field. The key result is that for
some range of dimensionless parameters the dynamic angular
segregation is replicated numerically. We conclude by discussing
possibilities for improving the model with the ultimate goal of
learning how to improve the efficiency of size separation of
vesicles by EHD methods.

Experimental Observations

Our experimental apparatus and procedure for fabricating
vesicles have been described previously.8 Briefly, a polydisperse
suspension of dioleoylphosphatidylcholine (DOPC) giant uni-
lamellar vesicles was prepared using a standard electroformation
procedure9 to generate 0.1 M sucrose-filled GUVs suspended in
0.1Mglucose solution.A small volume of the vesicle solutionwas
transferred into the chamber of the device sketched in Figure 1,
which consisted of two parallel glass slides (2 mm separation)

coated with ITO (Rs = 4-8 ohm/square) that served as electro-
des. Oscillatory electric fields were applied between the electrodes
using a function generator, and the resulting vesicle motion was
observed with a phase-contrast microscope.

Upon application of a sufficiently strong potential difference
(>1 V) and sufficiently low frequency (between 10 and 100 Hz),
similarly sized vesicles proceeded to aggregate. Vesicles with
sufficient size disparity, however, exhibited either the lifting or
orbiting behavior. The lifting behavior has already been described
inmore detail previously;8 herewe focus on the orbiting behavior,
examples of which are shown in Figure 1b,c and in Supporting
Information movies 1 and 2. Typically, a large vesicle (>20 μm)
would attract a crowd of smaller vesicles (<10 μm) that would
begin to move periodically toward and away from the larger
vesicle. Because the orbiting vesicles moved slightly in and out of
focus during each revolution, it was clear that they were moving
vertically as well as horizontally during each revolution, in a
manner at least qualitatively consistent with the streamlines
sketched in Figure 1a.

Most striking, however, was the tendency for the orbiting
vesicles to align along preferred orientations. Note that the
vesicles were initially randomly dispersed along the electrode,
and upon application of the field the small vesicles sufficiently
close to a large vesicle simplybeganorbitingat anangle prescribed
by their initial position. Over the course of several revolutions,
however, the small vesicles moved onto trajectories closer to one
another, ultimately forming “bands” similar to those shown in
Figure 1b. We emphasize that these bands are dynamic, with
individual vesicles occasionally joining or (much less frequently)
leaving. A specific example of the band formation process is
shown in Figure 1c, which tracks a single small vesicle as it
migrates closer to a band over the course of five revolutions
(cf. Supporting Information movie 2). Note that the dominant

Figure 1. Experimental observations of dynamic angular segregation. (A) Sketch of the experimental apparatus (not to scale). The
magnification shows a qualitative sketch of the toroidal EHD streamlines induced around a large vesicle. (B) Optical micrograph showing
a projected (plan) view of the dynamic bands of smaller vesicles orbiting around a larger vesicle in center. The arrows denote the approximate
positionof the bands, eachofwhich consists ofmultiple vesicles rotatingaround eachother. Image taken fromSupporting Informationmovie
1. Electric field is 6 V, 100 Hz; scale bar is 25 μm. (C) Time lapse images showing an individual vesicle (denoted by the arrow) moving to join
one of the bands.During each revolution itmoves slightly closer to the band at lower right. Images taken fromSupporting Informationmovie
2. Electric field is 8 V, 100 Hz; scale bar is 20 μm.
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force acting on the smaller vesicle is clearly the drag force due to
the EHD flow, since the smaller vesicle continues to move
periodically toward and away from the larger vesicle, while a
weaker but non-negligible force tends to draw the smaller vesicle
toward a nearby band over the time scale of multiple revolutions.

During the course of an experiment, typically about half of the
large vesicles attracted crowds of orbiting small vesicles, while the
other half simply lifted up on top of a layer of smaller vesicles.
Over time, some of the orbiting vesicles would cease orbiting and
accumulate underneath the larger vesicle, thereby lifting it off.
Because the dynamics are complex, we now turn to modeling
efforts to attempt to shed some light on the observed behavior.

Theory: Point Dipoles in a Cellular Flow

The preceding experiments demonstrate that the electric field
causes the vesicles to align preferentially along certain angles
(i.e., form bands). The next question is: why? Many electrically
induced behaviors observed with rigid colloids have been inter-
preted in terms of dipolar interactions,10-13 which tend to cause
the particles to align with the field. The “pearl chains” formed in
electrorheological fluids10 are a well-known example of the
consequence of dipolar interactions. Furthermore, note that the
EHD flow itself is caused by the interaction between the dipole field
and the free chargenear the electrode.5,6 Since the vesicles are clearly
polarized (as evidenced by the generated EHD flow), we investigate
here the hypothesis that the banding is similarly due to induced
dipole-dipole interactions between theorbiting vesicles themselves.
In previous work on induced dipolar interactions between colloids
the surrounding fluid has either been quiescent or subject to linear
shear, but here we are faced with the more complex situation of an
EHD flow generated by the interaction of a large vesicle with the
nearby electrode. We therefore begin by examining the interaction
of just two polarized objects in amodel flow field (Figure 2), before
moving on to more complicated interactions.

Application of the external field causes each vesicle to polarize,
and a useful model for the electric force exerted on adjacent
polarized objects is the point-dipole model14

Fdip ¼ βðE,ω,C0, :::Þ
rij4

fðθijÞ ð1Þ

where

fðθijÞ ¼ ð3 cos θij2 - 1Þer þ sin 2θij eθ ð2Þ

Here rij is the center-to-center separation between the vesicles, and
θij is the angle formedbetween the applied field and the vesicle line
of centers. The unit normal vectors er and eθ, in the radial and
angular directions, respectively, are defined with respect to the ith
vesicle (Figure 2). The prefactor β(E,ω,C0,...) describes the
magnitude of the force and depends among other variables on
the magnitude E and frequency ω of the applied field, the object
size, and the system material properties (such as permittivity and
ionic strength). The influence of these latter parameters is
captured in the dimensionless dipole coefficient C0. Note that
the force depends on the square of the applied field, E2, while the
frequency dependence is more complicated but is often described
using the Maxwell-Wagner model.10,11 A significant feature of
eq 1 is that the dipolar interaction is highly anisotropic, as
captured in the dimensionless vector f(θij) given in eq 2. For
dipoles aligned with the field (θij = 0 or 180�), the interaction is
positive (attractive) and the dipoles tend to aggregate. In contrast,
dipoles aligned perpendicular to the applied field (θij = 90�)
experience a negative (repulsive) force and the dipoles tend to
segregate. Moreover, the magnitudes of the respective forces are
unequal since the radial component of the force is a factor of
2 greater for θij = 0 compared to θij = 90�.

The key implication of the point-dipolar interaction is that
polarized objects at the same vertical distance above the electrode
feel a repulsive interaction, while those at sufficiently different
vertical distances feel an attractive interaction. Behavior consis-
tent with this picture has been repeatedly observed in the context
of rigid colloids, where most particles near the surface of the
electrode repel (in the absence of EHD flow), but some fractions
are observed to move up on top of other particles such that they
are aligned with the field.12,15 In the situation of interest here,
however, the vesicles are continually moving in a toroidal flow
field around a larger vesicle. Adjacent vesicles can therefore
alternate between aligned and unaligned with respect to the
applied field during the course of a single orbit, and a model of
the flow field is necessary.Althoughdetailed analyticalmodels for
the EHD flow field around a rigid spherical colloid are available,6

the solutions depend on a truncated infinite series in bispherical
coordinates.More importantly, necessary details about the electro-
kinetic properties of the vesicles are not well characterized, and
the extant solutions do not incorporate the influence of the
deformable vesicle interface.

Instead of addressing these complexities, we focus on a more
fundamental question: what is the interaction behavior of polar-
ized objects in a circulating flow? To address this question, we
ignore most of the complexities listed above, and we present a
simplified model focusing on the interactions of point dipoles in
a cellular flow. As we shall demonstrate, this approach yields a
surprisingly diverse set of trajectories, including many that
qualitatively match the experimental observations.

The model description is as follows. First, we assume that the
EHD flow structure around a large vesicle may bemodeled by the
cellular velocity field u = (ux, uy) defined by

ux ¼ U0 cos λx cos λy, uy ¼ U0 sin λx sin λy ð3Þ
HereU0 is the magnitude of the flow velocity and λ-1 is the size of
the cellular flow. Note that the velocity distribution has closed

Figure 2. Sketch of the forces acting on two electrically polarized
objects moving in a circular flow.
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streamlines. Similar flow fields have previously been used to
model the motions of aerosols and particles moving through
cellular periodic flows.16-20 Although the flow specified by eq 3
extends through all space with periodically arranged counter-
rotating cells, we restrict attention to a single cell, i.e., the region
-π/2< λx<π/2 and0< λy<π. The velocity profile thusmimics
a cross section of the toroidal EHD flow around a large vesicle.
Although this model does not capture the more complicated flow
structure due to the presence of the large vesicle, it does share the
essential feature of a circulatory flow. Note that we have assumed
that any EHD flow generated by the smaller vesicles is negligible. To
mimic the full three-dimensional toroidal flow,we specify the velocity
field as u = (ux, uy, 0), i.e., with ux and uy given by eq 3 and zero
imposed velocity in the z-direction. Periodic boundary conditions are
then specified at z=0and z=L, whereL is the circumference of the
large vesicle inducing the EHD flow. For sufficiently large L, the
resulting flow structure mimics the toroidal flow.

Next, we examine the interactions between the smaller vesicles
as they move about in the cellular flow (eq 3). For sufficiently
small values ofU0, theReynolds number is small and viscous drag
is dominant. Since vesicles are deformable, the drag force they
experience is nontrivial, but in this model we ignore this com-
plexity. We therefore assume that the hydrodynamic force on an
individual particle is given by Stokes drag

FD ¼ 6πμa
dx
dt

ð4Þ

where μ is the viscosity, a is the vesicle size, and x is the position
vector of the center ofmass of the vesicle. ByFaxen’s law, to leading
order the trajectory of the ith vesicle in the flow field is given by

6πμa
dxi
dt

¼ 6πμauþ
X
j

FE, j ð5Þ

where FE,j represents all of the electrical forces acting on the ith
vesicle. Here we have neglected higher order corrections in Faxen’s
law (i.e., the particles do not disturb the background flow) which
limits the model to situations where λa , 1. Higher-order drag
effects, wall effects, andhydrodynamic interactions between vesicles
are also neglected.

The electrical forces are, in general, comprised of several different
effects, including electrophoretic motion due to charge on the
vesicles, dielectrophoretic motion due to any nonuniformity in the
field, and induced-induced dipolar interactions between vesicles.
For the oscillatory fields of interest here, we assume that the
frequency is sufficiently high that electrophoretic motion is negli-
gible.Moreover, as a first approximation we ignore the nonuniform
electric field due to the presence of the large vesicle that generates the
toroidal EHD flow, so the electric field is simply E = E¥ey. These
assumptions leave the induced dipolar interaction as the primary
consequence of the external electric field, so by the point-dipole
approximation the force on the ith vesicle is given by eq 1.Note that
the representation of the vesicles as point dipoles is consistent with
the neglect of higher-order hydrodynamic interactions.

The point-dipole representation, however, leads to difficulties
because thedipolar force diverges as rijf0. Physically, the finite size
of the vesicles and the corresponding colloidal interactions (i.e., the
electrostatic repulsion between diffuse charge layers) prevent two
adjacent vesicles from interpenetrating. This interaction is typically

represented with the standard DLVOmodel, which has a repulsive
component that decays exponentially with a characteristic length
scale given by the Debye length.21 The DLVO model, however, is
invalid in the limit of point dipoles, since an exponential decay
(which converges to unity as r f 0) is necessarily weaker than the
divergent power-law decay described by eq 1. Hence, the standard
DLVO model does not prevent divergent interactions, and a
different description for point dipoles is necessary.

To approximate the repulsive interactions in a manner con-
sistentwith the point-dipolar representation,we define a “pseudo-
hard-sphere” repulsion

Frep ¼ -
ξ

rijm
er ð6Þ

Here the parameter ξ represents the magnitude of the repulsive
interaction and thus depends on the radius of the vesicle, while the
exponent m controls how rapidly the repulsion decays with
distance. Provided m > 4 so that divergent interactions are
prevented, we are free to choose any value for m; higher values
of m yield a steeper repulsive barrier and are thus more “hard-
sphere-like”. In the numerical calculations described below, we
chose m = 13, which mimics the Lennard-Jones repulsive force
valid on molecular length scales. We emphasize that we are not
claiming that an r-13 repulsive interaction is present physically in
the experiments described above; rather, this description merely
serves as a generic repulsive force for our numerical calculations.
Other values ofm are equally “valid”, and aswe shall see the general
behavior observed is not sensitive to the specific choice of m.

Combining eqs 1, 3, 5, and 6, we find that the position of each
particle is governed in dimensionless terms by

dx̂i

dτ
¼ ûðx̂iÞþ

X
i 6¼j

Ndip

Fij4
fðθijÞ-Nrep

Fij13
er

" #
ð7Þ

Here we have defined the dimensionless parameters

τ � tU0λ ð8Þ

Fij � rijλ ð9Þ

Ndip � βðE,ω,C0, :::Þλ4
6πμaU0

ð10Þ

Nrep � ξλ13

6πμaU0
ð11Þ

where distance is scaled on the length scale of the circulating flow,
λ-1, while time is scaled on the characteristic time required for the
fluid tomake a revolution, (U0λ)

-1. The dimensionless parameters
Ndip and Nrep gauge respectively the relative magnitudes of the
dipolar interaction and the repulsive interaction comparedwith the
drag. In the limit where Ndip and Nrep are both zero, the particles
simply follow the streamlines; the trajectories deviate from the
streamlines when Ndip and/or Nrep is nonzero. For sufficiently
strong dipolar interactions the objects will simply align with the
field and notmovemuch in response to the flow. Our experimental
observations, however, suggest that neither effect is negligible, since
the vesicles tend to align with the field while still undergoing
pronounced recirculation, and we are therefore most interested
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(18) Dungan, S. R.; Brenner, H. Phys. Rev. A 1988, 38, 3601–3608.
(19) Druzhinin, O. A. Phys. Fluids 1995, 7, 2132–2142.
(20) Festa, R.; Mazzino, A.; Todini, M. Phys. Rev. E 2009, 80, 035301.
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in the intermediate case where both drag and dipolar attraction are
non-negligible. Substitution of characteristic values23 into eq 10
yields Ndip ≈ 2 � 10-2, while requiring that the dipolar attraction
and pseudo-hard-sphere repulsion must balance at r = 2a (cf. eq
12) yields Nrep ≈ 5 � 10-5. As we shall see, simulations using
parametric values close to these estimates yields behavior similar to
that observed experimentally. Because eq 7 is nonlinear, we turn to
numerical calculations to determine the particle trajectories for
arbitrary values of Ndip and Nrep.

Two-Dimensional Numerical Simulations

For each simulation, specific values of Ndip and Nrep were
chosen and initial dimensionless positions (x̂init, ŷinit) for eachofN

particles were specified. (For simplicity, we henceforth omit
the hat symbols and note that all values are dimensionless.)
Equation 7 was then solved using standard numerical pro-
cedures (specifically, by means of the ode23 function in Matlab
version 7.3). We first summarize key aspects of the behavior with
just a pair of particles (N = 2) moving only in two dimensions,
before addressing multibody effects in the full toroidal (three-
dimensional) flow field.

Representative “steady-state” periodic trajectories for six basic
types of behavior are shown in Figure 3. In each calculation, the
point dipoles moved around transiently before obtaining a
“steady-state” trajectory, here defined as a repetition of trajectory
with less than 0.1% deviation, which typically occurred for τ ,
103. For each of the six behaviors, the left-hand plot shows the
trajectory (y versus x for both dipoles), while the right-hand plot
shows the “phase plot” of one x-coordinate versus the other).
The initial dimensionless positions for the two point dipoles were
(x1, y1)= (π/2,

π/4) and (x2, y2)= (π/2, 0) in each calculation, so as

Figure 3. Representative trajectories (on left) and corresponding phase plots (on right) for two point dipoles moving in a cellular flow field,
calculatedby solving eq7numerically.The initial positions are identical in each case: (x1, y1)=(π/2,

π/4) and (x2, y2)=(π/2, 0).Theparameters
Ndip andNrep are specified as indicated in each case. In trajectories, particle 1 is red and particle 2 is blue; colors in phase plots correspond to
those used in Figure 4. See also Supporting Information movies 3-8.

(22) Weisstein, E. W. Epitrochoid. http://mathworld.wolfram.com/Epitro-
choid.html.
(23) Noting that β=12πεε0a

6C0
2E2 for point dipoles,11 where the dipole coefficient

C0 is order one, we substitute characteristic values from our experiments: ε≈ 80, a≈ 5
μm, u ≈ 10 μm/s, μ ≈ 10-3 kg/(m s), λ ≈ 5 � 105 m-1, and E ≈ 3 � 103 V/m.
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to focus on the influence of Ndip and Nrep. Note that these initial
positions are on the same streamline, separated by 45�. The six
basic types of behavior are as follows.

(1) Aligned rotating (Figure 3A, SI movie 3). The two dipoles
align nearly vertically with the applied field and move in unison
(approximately in circles) with a fixed distance between them.
Because they are aligned vertically, the x-position for both dipoles
is always approximately equal at any given time, yielding a
distinctive positive slope in the phase plot (i.e., x1 ≈ x2).

(2) Dual orbiting (Figure 3B, SImovie 4). The twodipoles orbit
around each other on nearly identical trajectories that are mirror
images of each other, yielding a distinctive negative slope in the
phase plot (i.e., x1≈-x2). The dipoles are pulled near each other
when they are close to aligned vertically but then repel when the
flow aligns them horizontally. The resulting trajectories are
shaped qualitatively like skewed ovals aligned at a 45� angle.

(3) Bicyclic orbiting (Figure 3C, SI movie 5). The two dipoles
orbit around each other but periodically get pushed into and out
of the region near the stagnation point in the center of the flow
field. The corresponding phase plot is complicated but symmetric
around the line x1 = -x2.

(4) Stagnating (Figure 3D, SI movie 6). One of the dipoles is
pushed into the stagnation point, while the other orbits around it at
approximately a fixed distance away. Because the dipole in the
stagnation point always has x1≈ 0 while the other one is con-
tinuously moving, the phase plot has a characteristic flat slope.

(5) Wobbling (Figure 3E, SI movie 7). The trajectories here are
similar to stagnating, except that both dipoles continue toorbit on
different streamlines. Because they are moving at different velo-
cities, the only predictable aspect of the phase plot is that the range
of x1 is greater than that of x2 and that the phase plot trajectories
qualitatively “wobble” about.

(6) Chasing (Figure 3F, SImovie 8). The two dipoles appear to
“chase” each other on the same streamline (different from the
streamline they started on), separated by a short distance about
45� apart. The phase plot has a characteristic circular shape.

Two other types of behavior, not shown in Figure 3, were also
observed. For sufficiently strong repulsive forces and weak dipolar
attraction, one or both of the dipolesmoved outside the boundaries
of the cellular flow (i.e., |x| > π/2, y> π, or y<0). Qualitatively,
the dipoles “pushed” one another out of the cellular flow region; we
refer to this behavior as “expelled”. A similar but distinct behavior
was observed for larger magnitudes of Ndip, where the dipoles
clearly aligned but moved in sufficiently large orbits that one or
both of the dipoles moved periodically into and out of the domain.
We denote this behavior as “aligned but expelled”.

The numerical calculations revealed that the different beha-
viors are favored over particular ranges of Ndip and Nrep. A
“phase diagram” of the steady-state trajectory behavior is shown
in Figure 4, in which two key features are noteworthy. First, the
aligned trajectories (blue diamonds) all occur on the lower right-
hand side of the diagram, while all of the other “nonaligned”
trajectories occur in the upper left-hand side of the diagram. This
general trend is physically intuitive, since we expect the dipoles to
remain aligned with the imposed electric field more readily for
larger values of Ndip, but there is a sharp transition between
aligned and nonaligned trajectories indicated by the dashed black
line. Indeed, the existence of this sharp transition can be predicted
in the context of themodel. A balance of the radial components of
the dipolar attraction and repulsive force requires

Fdip � Frep f
Ndip

Feq4
� Nrep

Feq13
f Feq �

Nrep

Ndip

 !1=9

ð12Þ

where Feq is the separation distance at which the radial forces are
balanced. Because the repulsive force has no angular component,
a balance of the angular forces requires the dipolar force to be
balanced by the fluid drag

Fdrag � Fdip f ux � Ndip

Feq4
ð13Þ

Near the center of the cell the flow mimics a solid-body rotation,
with u increasing linearly with distance from the stagnation point.
Restricting attention to this vicinity, we have the approximation
ux ≈ Feq, and combination of eqs 12 and 13 yields the critical
relation

Nrep � ðNdipÞ14=5 ð14Þ
The slope of the dashed black line inFigure 4 is exactly 2.8, in accord
with eq 14. Similar arguments based on a torque balance yield the
same result. Qualitatively, if the torque exerted by the dipolar
interaction is sufficiently strong, the dipoles will remain aligned with
the field, but if the fluid drag is strong enough, then the dipoles will
rotate around each other. More generally, the critical transition will
obey the relationNrep∼ (Ndip)

(mþ1)/5 for anym>4, suggesting that
the existence of a transition between aligned and nonaligned
trajectories is insensitive to the specific choice of power-lawexponent
(cf. eq 6).

Three-Dimensional Numerical Simulations

Many of the observed 2-D trajectories are distinctive, and a
fascinating mathematical question is whether the complicated
steady-state trajectories can be predicted analytically from the
nonlinear governing equations. Indeed, many of the trajectories

Figure 4. Phase diagram showing the steady-state trajectory be-
havior of two point dipoles in a two-dimensional cellular flow as a
function of the dimensionless parametersNdip andNrep. The initial
coordinates were (x1, y1)= (π/4,

π/2) and (x2, y2)= (0, π/2) for each
calculation. The symbols are black crosses = expelled from
domain; solid blue diamonds=aligned rotating; hollow blue dia-
monds = aligned but ultimately expelled; solid red circles = dual
orbiting; hollow red circles = bicylic orbiting; green squares =
stagnating;orange stars=wobbling; andmagenta circles=chasing.
The dashed black line qualitatively separates aligned and nonaligned
trajectories and has a slope of 14/5 (see text).
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bring tomind the classical studies of particle dynamics via inverse
power laws that yield epitrochoids and other parametric curves.22

Here, however, we focus on whether the model can replicate any
of the experimental observations. We therefore note the second
significant feature in Figure 4, which is that there exists a broad
swath of dimensionless parameters for which dual orbiting occurs
(red circles). This result is noteworthy because dual orbiting is, at
least qualitatively, the behavior most similar to that observed
experimentally (cf. Figure 1).

Focusing on the regime of parameter space where dual orbiting
occurs, we now extend the model toN interactions in a full three-
dimensional flow field. As noted above, the three-dimensional
toroidal flow is mimicked by extending the 2-D cellular flow
profile in the z-direction with zero z-velocity, i.e., u= (ux, uy, 0),
and imposing periodic boundary conditions at z=0 and z= λL
where λL is the dimensionless circumference of the large vesicle
inducing the EHD flow. Although there is no fluid flow in the z-
direction, particle motion in the z-direction is induced by the
dipolar and repulsive interactions, which depend on the relative
orientation of each particle pair (including the component in the
z-direction).

Equation 7 was solved numerically for each ofN particles. The
results of a typical simulation are shown in Figure 5 where the
position of 25 point dipoles, all with equal values ofNdip= 10-2,
Nrep=10-4, are tracked through time.The results are shownwith
a projected view (i.e., looking from the y-direction toward thex-z
plane) where the z-coordinate has been mapped onto an angular
polar coordinate; the large blue circle is the resulting excluded
zone and is intended to represent schematically the presence of the
large vesicle generating the surrounding EHD flow. At τ=0, the
point dipoles are all placed randomly throughout the domain. As
they began moving in the flow field (see Supporting Information
movie 9), they begin to align along preferred orientations. Bands
are discernible as early as τ = 10, and by τ = 200 all but two of
the dipoles are aligned along just six basic angular orientations.
The tendency toward banding is quantified more precisely in
Figure 6A, which plots the angular separation Δθ between every

Figure 5. Numerically calculated sequence showing the projected
(plan) viewof 25point dipoles, initially placed in randompositions,
undergoing dynamic angular segregation in a toroidal flow field.
See also Supporting Information movie 9. Parameters: Ndip =
10-2, Nrep = 10-4, λL= 10.

Figure 6. (A) Angular separation between each point dipole and the other 24 as a function of time, extracted from the same calculations as
shown in Figure 5. Note the evolution from initially random to discrete angular separations, indicative of the banding phenomenon. The varied
colors serve todifferentiate eachof the300 curves. (B)Numberofdiscretebands,definedbya1%tolerance inangulardeviations, as a functionof
time for three different sets of parameters: triangles, (Ndip,Nrep)= (10-2.5, 10-5); squares, (Ndip,Nrep)= (10-2, 10-4); and circles, (Ndip,Nrep)=
(10-1.5, 10-3). In each case, there were 25 initially randomly positioned dipoles and λL=10. Note that the number of discrete bands decreases
more rapidly for larger values ofNdip andNrep. Each curve is the mean of five simulations, and the error bars represent one standard deviation.
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dipole and the other 24. The 300 individual curves rapidly
condense into a much smaller subset of curves, reflecting the
fact that many of the dipoles align onto the same angular
orientation.

Calculations repeated with other random initial configura-
tions, and other values of Ndip and Nrep revealed the same basic
trend toward angular banding, provided Ndip and Nrep were
chosen from the parameter space that corresponded to dual
orbiting shown in Figure 4. Representative examples of the
banding dynamics for different values ofNdip andNrep are shown
in Figure 6B. The “number of bands” is defined here as the
number of nonempty intervals in the histogram of angular
positions, with the interval width set as π/100 (i.e., a 1% tolerance
in angular deviation). Note that this definition provides a con-
servative overestimate of the number of bands, since dipoles
which “look” like they are in the same band might actually have
more than a 1% deviation in angular position. The key observa-
tion in Figure 6B is that the number of discrete bands decreases in
amanner qualitatively similar to that shown inFigure 5, although
the rate of banding depends on the specific values ofNdip andNrep.
Not surprisingly, the band formation occurs more rapidly for
larger values of Ndip and Nrep (again, provided the values
correspond to the dual orbiting case in Figure 4). More impor-
tantly, the simulations show that the banding phenomenon is
robust: qualitatively similar banding dynamics are observed for
values of Ndip and Nrep that vary respectively by 1-2 orders of
magnitude.

Much more complicated behavior was observed for other para-
meter values, such as those corresponding to bicyclic orbiting. The
main result here, however, is the strong similarity between the
experimentally observed bands (Supporting Information movies 1
and 2) and the numerical calculations (Supporting Information
movie 9), suggesting that the model of point dipoles moving in a
circulatory flow indeed captures the salient physical features of the
experimental system.

Conclusions

The primary conclusion from our study is that the observation
of dynamic angular segregation of vesicles is consistent with a
mechanism based on dipolar interactions. We showed that a
simplified model based on point dipoles in a cellular flow yields a
rich variety of trajectories, some of which closely mimic the
experimental observation of dynamic angular segregation. Many
questions remain, however. First, from an experimental perspec-
tive it is not clear why some of the large vesicles immediately
displayed lifting versus orbiting, nor is it clear what triggered the
transition between modes. Moreover, to our knowledge neither
the lifting nor orbiting behaviors have been reported with poly-
disperse suspensions of rigid colloids, begging the question ofwhy
vesicles are apparently different. From a modeling perspective,
several refinements to the model might begin to help address this
question. For example, the 3-Dmodeling here focused on the case
of all N dipoles having the same values of Ndip and Nrep, but
experimentally these will all be different (due to the polydispersity
of the vesicle suspension). Modeling could be performed where
distributions inNdip andNrep are assigned to the orbiting vesicles.
Likewise, in the current model the large vesicle simply generates
the EHD flow, but in practice it also distorts the electric field; a
more complicated model could incorporate a nonuniform electric
field through the domain. There could also be smaller and
transient EHD flow fields generated by the small vesicles them-
selves whenever they are in closer proximity to the electrode. The
point-dipole model presented here can serve as a limiting case for
future calculations that tackle these questions.
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