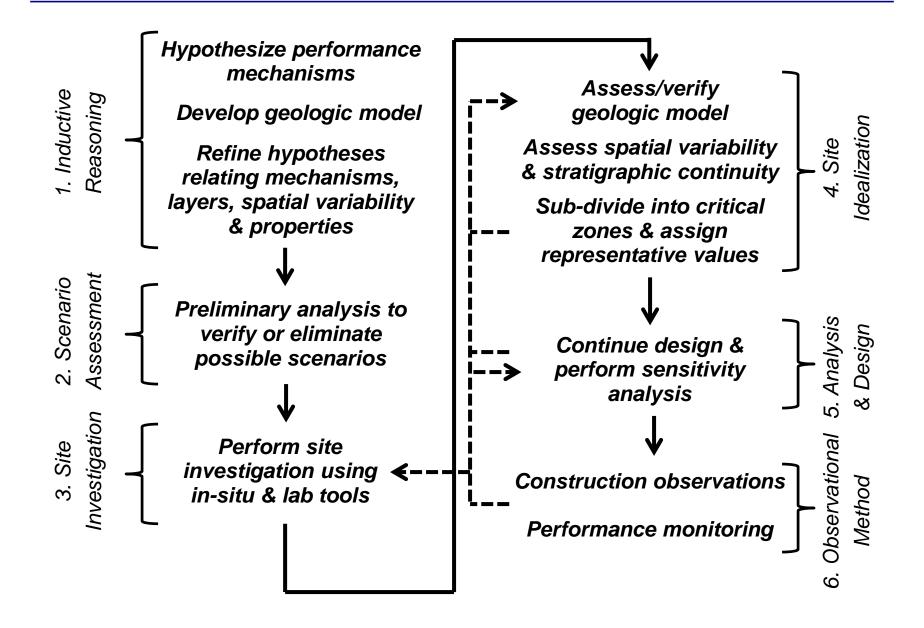
Integrated Site Characterization & Selection of Design Parameters Davis, CA, October 23, 2015


Review & Discussion of Integrated Site Characterization Approach

[Questions to ask in reviewing work as it is planned, executed, and documented]

Site Characterization Process

Step 0: ...Before You Start

- What areas of expertise are necessary for the project, and who will fill each role?
- Who has expertise/experience on similar projects, and are they sufficiently engaged?
- What past experience/knowledge do we have in the project's geological setting (same or similar)?
- What analogs exist at/near the project site that indicate possible controlling mechanisms, performance issues, and design solutions?
- To what extent, and in what capacity, must a geologist be involved in formulating, and later revising, the geologic model?
- ➤ Have sufficient time and budget been allocated for stages besides the site investigation (SI) stage? If not, how must the scope of SI be reduced?
- After/during which stages should we perform internal/external project review?

Step 1.1: Hypothesize Performance Mechanisms

- What mechanisms influenced the performance of prior structures at or near the site?
- What mechanisms have controlled the design or performance of similar structures in the region?
- Given the current project design, what mechanisms likely control performance?
- For each potential mechanism identified:
 - what is the mechanism length scale?
 - what soil zones are engaged in the mechanism?
 - what are the relevant soil engineering properties?
- How was the likelihood of the different potential mechanisms ranked?

Step 1.2: Develop Geologic Model

- How has prior geologic mapping (regional and site-specific) been incorporated into the model?
- What information from historical documentation (site work, construction photos, post-EQ reconnaissance, aerial photos) influenced the model?
- For each geologic and earthwork zone:
 - what were the depositional and weathering processes?
 - what is the expected spatial variability?
 - what is the expected composition (grain size, plasticity)?
 - what is the expected anisotropy (layering, fracturing, strike/dip)?
- Which soft/weak/permeable layers have been problematic in the past or may be in the future?
- What are the groundwater conditions and how do/will they vary in time?
- How was seismic activity assessed, and is it a concern?

Step 1.3: Refine Hypotheses Relating Mechanisms, Layers, Spatial Variability & Properties

- What information was primarily relied upon in refining certain hypothesized mechanisms and excluding others?
- For each mechanism how did the geologic model influence the ranked likelihood of occurrence and identification of zones expected to control performance?
- Are there particular stratigraphic layers that will (likely) control/limit/guide multiple mechanisms?
- What historic/regional data was used to develop estimates of spatial variability and soil properties?
- What representative value of soil properties have been selected considering the length scale of the mechanism relative to the stratigraphic continuity of the controlling zone(s)?

Step 2: Preliminary Analysis to Verify or Eliminate Possible Scenarios

- What is the simplified, idealized project cross-section that represents the most likely site conditions?
- For the critical soil layers, what are the range of best-case and worst-case conditions for soil layer extent, continuity, and properties?
- What simplified analysis methods were used, and are the simplifying assumptions required acceptable at this stage?
- Based on the sensitivity analysis, reducing the uncertainty of which conditions (layer extent, continuity, properties) would provide the greatest reduction in performance uncertainty?
- Based on the sensitivity analysis, is understanding the spatial variability or obtaining accurate soil property measurements more important?
- Would it be beneficial (if possible) to perform future detailed analyses in a probabilistic manner, or is a deterministic approach sufficient given the unknowns and criticality of the structure?
- Are the outcomes of this stage consistent with observations at similar structures in the region?

Step 3: Perform Site Investigation Using In-situ & Lab Tools

- Given the expected spatial variability, what priority was given to mapping variability versus obtaining detailed engineering property characterization?
- What best practices for in-situ testing, drilling & sampling, and laboratory testing were used given the soil types and stratigraphic layering anticipated?
- Was the sequencing of field work appropriate for verifying the geologic model prior to detailed engineering property determination?
- Was a systematic approach used to assess spatial variability (e.g. multiple CPTs performed at varying spacings)?
- Did the insitu and laboratory testing focus on the characterizing the correct properties, and if so, was there redundancy in characterization methods to cross-verify property estimates?
- How do measurements obtained compare with historical data and standard literature values?
- Have data obtained been presented in a transparent format that readily allows side-by-side comparison of different types of information?
- What aspect of the geologic model was least characterized during SI?

Step 4.1: Assess/verify Geologic Model

- What important changes/updates to the initial geologic model were made based on the additional information obtained during the SI?
- What site investigation (SI) data conflicted with the initial geologic model?
- Did the SI lead to changes in the understanding of the depositional and weathering mechanisms?
- Did the SI reveal previously unknown/unexpected zones?
- What SI data forced zones/layers to be redefined?
- Was sufficient data collected to characterize these unknown/unexpected zones?
- Does the geologic model reasonably explain the soil characteristics encountered on-site (e.g. gravels, clays)?

Step 4.2: Assess Spatial Variability & Stratigraphic Continuity

- How was the SI data used to quantitatively assess the spatial variability of critical zones?
- Is the distribution (COV) of relevant property (e.g. GSD, (N₁)₆₀) measurements in critical zones consistent with typical literature values, more uniform, or more variable?
- What 16%, 33%, and 50% values for critical design properties?
- Were soil properties and penetration resistances amenable to normalization for dependence on overburden stress?
- How does the spatial extent of the zones of interest compare with the length scale of the mechanism(s)?
- Were particular zones identified that could be critical for seepage?
- Were particular zones identified that may be amenable to sand-like liquefaction or clay-like strain softening during earthquake loading?

Step 4.3: Sub-divide into Critical Zones & Assign Representative Values

- ➤ What data led to some stratigraphic units being sub-divided based on difference in properties (e.g. gradation, strength, permeability, saturation)?
- Were continuous zones of weakness identified that may lead to localization of the failure mechanism, and if so, how were its properties selected?
- Was the length scale of the deformation mechanism comparable (or larger than) to the critical zone such that an average value is appropriate for analysis?
- Is the length scale of the deformation mechanism smaller than the critical zone such that a lower value is appropriate for analysis?
- ➤ If the mechanism intersects multiple zones, how was the interaction effects between zones handled?
- How was the final 'baseline' condition selected for analysis & design?
- \blacktriangleright How were differences in property estimates obtained by different methods resolved? (e.g. ϕ ' from lab and SPT)

Step 5: Continue Design & Perform Sensitivity Analysis

- How does the final 'baseline' condition differ from the simplified, initial 'baseline' condition, and are the changes important to design & analysis?
- Were the assumptions made in the initial analysis still acceptable, or were most sophisticated analyses warranted?
- How were scenario variations of the 'baseline' case selected and analyzed?
- Did the scenarios considered include variations in stratigraphic boundaries/zones, constitutive models, EQ input motions, etc. in addition to variations in soil properties?
- ➤ How were differences in performance estimates obtained by different methods resolved? (e.g. liq. Triggering from SPT or CPT)
- What opportunities exist during construction to further evaluate the design?

Step 6.1: Construction Observations

- Were the priority observations to be made during construction (excavation, construction, filling) documented and disseminated to field personnel?
- What observations during construction enabled (or could enable) verification of the developed geologic model?
- What observations during construction enabled (or could enable) identification of potential seepage issues?
- What observations during construction enabled (or could enable) an indirect evaluation (back calculation) of key properties?
- What observations during construction revealed (or could reveal) unexpected/unforeseen conditions, and how did these observations influence design/construction?

Step 6.2: Performance Monitoring

- What measurements, in what locations and how frequently, will be obtained to monitor the initiation and progression of the controlling mechanisms?
- ➤ Is the instrumentation system automated, sufficiently detailed to obtain critical measurements, and yet still maintainable?
- Is there a long term monitoring contract in place to obtain and interpret the data collected?
- Has a logic action decision structure been developed and put in place to trigger decisions and actions when measurement(s) cross predefined threshold levels?
- Is there a management plan installed to review data collected and update the decision structure on a regular basis?

Step 7: ... As You Finish

- Is the project documentation and files organized, sufficiently detailed, and archived?
- Has the responsibility of the continued performance monitoring plan been clearly assigned/delegated?
- With an additional 20% budget supplement what stages and issues would you focus on refining, and what activities would you undertake?
- In hindsight, which activities and expenses were excessive and not necessary? Could this of been avoidable?
- How should have the geologist been engaged and utilized more effectively?
- ➤ At what stages during the process would have peer review (internal or external) been beneficial?
- What lessons learned on the project would be beneficial to the office/company? How will those lessons be shared?