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Abstract

This project is a preliminary investigation of the wind resource in urban areas.
Five buildings in two separate locations within the city of San Francisco were chosen to
assess near surface winds on buildings by means of wind-tunnel testing in the
Atmospheric Boundary Layer Wind Tunnel at the University of California, Davis. Three
buildings, Fox Plaza, the CSAA Building and the Bank of America Building, located near
10t Street and Market Street, were tested for two settings: existing, which includes
existing buildings and approved developments in the area, and cumulative, which
includes proposed development projects and gives an idea of what the city might look
like in the near future. Two buildings near Folsom Street and Main Street were wind-
tunnel tested for the existing setting only.

It was shown that the wind over all of the buildings tested near 10" Street and
Market Street averaged “good”, over 400 Watts per square meter, or “great”, over 700
Watts per square meter, average wind power density values for both existing and
cumulative settings, and the two buildings near Folsom Street and Main Street had

average values of 235.07 and 232.73 Watts per square meter.



Executive Summary

Introduction

This project is a preliminary investigation of the wind resource in urban areas.
Five buildings in two separate locations within the city of San Francisco were chosen to
assess near surface winds on buildings by means of wind-tunnel testing in the
Atmospheric Boundary Layer Wind Tunnel at the University of California, Davis. Three
buildings, Fox Plaza, the CSAA Building and the Bank of America Building, located near
10th Street and Market Street, were tested for two settings: existing, which includes
existing buildings and approved developments in the area, and cumulative, which
includes proposed development projects and gives an idea of what the city might look
like in the near future. Two buildings near Folsom Street and Main Street were wind-
tunnel tested for the existing setting only.

The surfaces of the buildings, including locations spread out over the faces and
corners of the building, rooftop perimeters and specific elevations above certain rooftop
locations were analyzed and average wind power densities were calculated for each

location measured on the building.

Purpose
The need to utilize renewable energy resources is continually growing. California
has already enacted an initiative to dramatically increase its use of renewable energy

sources, including wind, to 20% of all electric energy usage by 2017. Potential current



and future difficulties transmitting energy from the rural locations of many sources of
renewable energy make it ideal to find sources of renewable energy close to the areas of
maximum usage, which include urban areas. Thus, the utilization of wind energy in
urban areas is of rapidly growing interest; but, there is a lot of work left to be done
before wind energy converters, or WECs, can be successfully integrated into an urban
environment.

The purpose of the study is not to evaluate any specific type of WEC; however,
power curves from specific WECs are necessary to predict power production and energy
capture and are used to obtain preliminary results. Various WECs for urban settings are

discussed for informational purposes only.

Project Objectives

The objective of this study is to gain a further understanding of the wind
resource in urban environments, thus expanding the possibilities of wind energy
utilization in urban areas. This study focuses on a specific city, San Francisco, by
examining the wind flow over five buildings at two different sites, measuring wind over
various locations near the surfaces, corners, rooftop perimeters and elevated points
around the rooftop of each building. All five buildings were assessed with surrounding
buildings as they exist today, or including recently approved projects in the city where
construction is imminent. In addition, three buildings at one of the sites were also

analyzed in a setting that is based off of potential future development plans in the city,



showing how the wind, and with it wind power potential, could change with future

construction around the site.

Project Outcomes

It was shown that all of the buildings tested near 10th Street and Market Street
averaged “good”, over 400 Watts per square meter, or “great”, over 700 Watts per
square meter, average wind power density values for both existing and cumulative
settings, and the buildings near Folsom Street and Main Street had much lower average
values of approximately 234 Watts per square meter. The measurement locations
yielding the highest average wind power densities were typically on the perimeter of the
rooftops and the space above the roof for all buildings.

Building development in San Francisco around the sites had varying effects on
the wind characteristics of each building. In some cases, developments increased the
average wind power densities for many measurement locations; in others, is lowered the
average wind power density values for many measurement locations. All buildings

experienced locations of increasing and decreasing average wind power density values.

Conclusions
Wind-tunnel testing showed that the best place to place WECs is on or above the
roof level of a given building. While a few general trends such as this were found, it was

also shown that each building had its own specific set of wind characteristics, leading to



the conclusion that testing of specific sites should be recommended if it is desired to

incorporate WECs into that building’s design.

Recommendations

In order to gain a more general understanding of wind over the surface of a
building in an urban environment, it is recommended that more buildings be wind-
tunnel tested to get a better sampling of possible wind conditions for different kinds of
urban cityscapes. With enough information, it may be possible to find ways to further
generalize wind characteristics of certain types of cityscapes and building configurations.
Other urban areas, besides San Francisco, may also be studied in the wind tunnel to
further expand knowledge of wind patterns in an urban environment.

Urban environments have the potential to provide a suitable wind energy
resource, provided that turbulence effects, if proven to be a problem with current of
future designed WECs, can be mitigated. A closer look into how turbulence can affect
urban WECs is advised.

One way to improve the data obtained from wind-tunnel testing in the future is

to implement the use of a 3-D probe.

Benefits to California
With a better understanding of winds on the surfaces of buildings in an urban
area, more effective WECs can be developed for and therefore utilized in urban areas.

This would help California meet its goal of having 20% of its electric energy produced as



renewable energy by 2017 and could cut down on transmission problems if utilized

effectively.



1.0 Introduction

The need to utilize renewable energy resources is continually growing. California
has already enacted an initiative to dramatically increase its use of renewable energy
sources, including wind, to 20% by 2017. Thus, the utilization of wind energy in urban
areas is of rapidly growing interest; however, there is a lot of work left to be done before
wind energy converters, or WECs, can be successfully integrated into an urban
environment.

The objective of this study is to gain a further understanding of the wind
resource in urban environments, thus expanding the possibilities of wind energy
utilization in urban areas. This study focuses on a specific city, San Francisco, by
examining the wind flow over five buildings at two different sites, measuring wind over
various locations near the surfaces, corners, rooftop perimeters and elevated points
around the rooftop of each building. All five buildings were assessed with surrounding
buildings as they exist today, or including recently approved projects in the city where
construction is imminent. In addition, three buildings at one of the sites were also
analyzed in a setting that is based off of potential future development plans in the city,
showing how the wind, and with it wind power potential, could change with future
construction around the site.

This report covers the findings in the wind-tunnel study conducted in the
Atmospheric Boundary Layer Wind Tunnel at the University of California, Davis.
Results include average wind power density calculations for each measured location

based on San Francisco’s wind data, and potential power output calculations for various



types of WECs. From this information, recommendations on where to site anemometers
around the sites in this study are made.

The purpose of the study is not to evaluate any specific type of WEC; however,
power curves from specific WECs are necessary to predict power production and energy
capture and are used to obtain preliminary results. Various WECs for urban settings are
discussed for informational purposes only. Please note that large tables and figures, as
referred to in the text of this study, are located at the end of their respective sections or

sub-sections.

1.1 Background on Urban Wind Energy Converters

Great interest in wind energy has led to much advancement, however most wind
energy production occurs in rural areas, where energy transmission can be difficult and
costly. It may be possible for some of these issues to be mitigated by placing WECs at the
site of demand, which would include urban areas. Unfortunately, other issues may be
created by locating WECs in an urban environment, most of which are not yet fully
evaluated. These issues may include noise, visual impacts, electromagnetic interferences
and various safety concerns. While there are not many studies as to these impacts in an
urban area, studies conducted regarding rural areas can be analyzed and related to
potential urban impacts. The objective of this study is not to fully assess the effects
WECs may have on their surrounding environments; however, it is important to be
aware that the wind resource is not the only issue affecting the choice of site for a WEC

in an urban environment.



One way of siting potential WECs is by utilizing a wind tunnel to survey sites in
cities. The wind tunnel will allow for data collection in a compressed time, as well as a

future look into the changes that will occur as the urban area changes.

1.1.1 Typical Horizontal Axis Turbines in an Urban Environment

While horizontal axis turbines are the predominant WEC here in the United
States, most are placed in rural areas. Some of the effects of these wind turbines on their
environment include visual impacts, seismic issues, electromagnetic interference, noise
impacts and disturbance to avian life. Locating large horizontal axis turbines away from
the population significantly lowers the weight of these effects, while locating these

devices near an urban area may require significant mitigation of these issues.

Visual Impacts

The visual impact of a wind turbine or farm is the most difficult to quantify
because it is the most subjective impact on the environment. There have been several
studies on the design aspect of wind turbines that lead to many design ideas that could
aid in the reduction of visual disturbance caused by wind energy systems (Manwell
2003). One of the major advantages of placing wind turbines in urbanized areas,
however, is that the WECs would not intrude on naturally visually pristine areas. This
does not mean that the visual impact is negligible; more people will be subjected to the

visual impact of an urban wind farm simply due to its proximity to people. It may be



possible, however, to blend technology into a building’s architecture, making it
aesthetically pleasing and interesting.

One of the more interesting issues that causes a visual disruption are the
opposite spinning of rotors, and it is suggested that wind turbines be sectioned by spin
direction. Light pollution is also a concern, and lights on turbines should be restricted to
aircraft safety. Running power cables and transmission lines underground or coupling
them with roads will minimize visual obstructions in rural areas (Manwell 2003).
Luckily, most of these issues do not appear to be as significant in an urban area due to
the many light sources and power lines already in existence. The movement patterns of
a WEC will still need deeper considerations and studies.

While flickering shadows caused by the rotating blades can be a source of
annoyance, it will only occur for a few minutes at a time and only at certain times of the
day. Manfred (1991) suggests that residents close their blinds when affected. It is
difficult to say whether residents will even entertain this suggestion, however; any
infraction into residents” daily lives is usually met with severe resistance, supporting the

need for further studies into visual impact issues in residential/urban areas.

Seismic Issues

Buildings are constantly undergoing seismic analyses, and the addition of a WEC
to an existing building may meet with concern. An analytical study was done on wind
turbines being placed on building rooftops, showing that a time domain analysis for

seismic issues can yield significant benefits over sole analysis in the frequency domain.

10



Witcher (2004) states that by correctly applying earthquake analysis from buildings to
wind turbines and performing that analysis in the time domain, the “aeroelastic
interaction of the dynamic motion of the wind turbine structure with both the wind
loading action on the rotor blades and the response of the turbine controller can be
modeled.” It also is shown that, for a parked turbine, the combination of a high wind
speed and a seismic event may cause loads higher than if the turbine were operating. A
study consisting only of a frequency domain analysis would not have shown this due to
the incorrect modeling of the damping of the turbine (Witcher 2004).

Yet another advantage is that the safety system and controller’s influence are
modeled correctly in the time domain. If nacelle acceleration causes the turbine to shut
down, the effects of the shutdown, from operation to idle or parked status, can be
correctly modeled. It is important to note that analyses done in the time domain have
yielded results similar to those from a frequency domain analysis (Witcher 2004). If a
wind turbine is to be placed on top of a building, it should be possible to model seismic

events effectively.

Electromagnetic Interference

Electromagnetic interferences may be of significant concern in an urban area.
While such interference can already be disruptive in a rural area, the disturbance does
not affect many people. When moving to an urban environment, however, the number
of signals jumps up dramatically. Just how electromagnetic wave transmission will be

affected in such a complex area is not yet fully understood. Studies in rural areas,

11



however, shed some light on some issues expected to occur in urbanized areas, though
most studies have also been conducted solely on wind turbines, and may not apply to
other WECs.

Many of the actual or potential effects of wind turbines on electromagnetic
waves have either been observed in the field or in a laboratory, or have been worked on
analytically. Broadcast television interference has been reported as a slight wiggle of the
picture in frequency with the passing of each blade through the signal at every rotation
(Manwell 2003). This effect may be exaggerated by the use of metal blades, and may be
minimized by current fiberglass technology. FM interference has only been observed in
laboratories, and is characterized by a background hiss. This interference was
determined to occur within tens of meters from the turbine, which might not be a large
affect in a rural wind farm, yet could be a significant problem for an urbanized wind
farm (Manwell 2003).

Certain aircraft navigation and landing systems, such as VOR (VHF omni
directional ranging) are affected by stopped wind turbines, yet are relatively unaffected
by operating turbines; as a result, wind turbines (and other structures of similar size)
have been disallowed within one kilometer of a VOR station. Analytical studies have
shown a significant effect of wind turbines on microwave links, where the turbine
interferes with the microwave’s modulation. Cellular phones are expected to be
minimally affected due to their already mobile nature, and satellite signals should not be

affected due to their elevation and antenna gain (Manwell 2003).

12



Since the problem of electromagnetic interference is so complex, each wind site
will require its own evaluation. A typical evaluation includes locating radio and
television (or other) transmitters and receivers in the general vicinity of the turbine,
which can be difficult since it is rare for a central registry of all transmitters in an area to
exist. Mobile transmitters and part-time transmitters must also be accounted for, as well
as emergency services and air craft transmitters. Interference zones must then be
identified, and if the turbine is set to be located inside an interference zone, further
study will need to be conducted. Some solutions to interference are to better direct the
antenna, reduce the effect of the wind turbine through design compromises, and
maximize the distance from the wind turbine to the receiver (Manwell 2003). This will be
difficult if it is desired that turbines be located near residences.

Again, most of these studies discussed are located in rural environments. This
problem will most likely require studies in an urban environment, however, due to a
significant increase in receivers, in addition to a more complex terrain, including
buildings and other man-made structures. If a wind turbine is designed for placement
on the top of a building, this could create even more problems since it is also where the
building’s antenna is usually located. In this case, it may be necessary to evaluate certain
trade-offs, or consider the use of non-classical WECs. One consideration, however, is the
growing use of cable as opposed to antenna transmission. It is unclear if and how wind
turbine operation affects cable reception, but, intuitively, it would seem that cable

television should remain relatively undisturbed.
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Noise

Noise effects are similar to visual effects because quantification of disturbances is
usually subjective. Different people are more or less perceptive to different sound
sources, depending on frequency, intensity, patterns and pitch, making it difficult to
quantify when certain noises become problematic (Manwell 2003). Low frequency
vibrations from rooftop WECs are transmitted to a building’s structure and can be
problematic for residents, but maybe tolerated for industrial buildings (Manfred, 1991).
Again, most studies have been done with respect to wind turbines, and may not be
applicable to the noise effects of other WECs.

Noise perception can be broken down into three basic categories: subjective,
where it is a minor annoyance; interfering, where it interferes with daily activities such
as talking, sleeping and possibly learning; physiological, where it can have lasting,
physical effects such as anxiety, hearing loss or can cause ringing in the ear (Manwell
2003).

Since wind turbines run when the wind is blowing, much of the noise is masked
by the naturally occurring noise of the wind (Manwell 2003). The greatest noise
inconvenience occurs at low speeds because at higher speeds, the noise of the wind itself
surpasses the noise of the WEC (at about 7 meters per second) (Manfred, 1991). One
suggestion might be to have a higher startup wind speed for turbines, but this could
significantly decrease the total energy availability of a turbine, and is unpractical,
especially in an urban environment where lower speeds are prevalent. Advances in

technology also may eliminate this problem all together (Manwell 2003).
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If it is desired that a wind farm be located near an urban area, distances between
WECs and buildings were determined to satisfy noise policies in Germany, ranging
from 100 to 1000 meters for a residential area and 20 to 250 meters for a commercial area
(Manfred 1991). If the tower is 20 meter above the roof this could be satisfied. However,
most buildings do not have devices with a height above the roof of more than 10 meters.

Noise from wind turbines is transmitted either through the air or through the
turbine’s structure (Manwell 2003). This may be problematic for placing WECs on
rooftops unless there is a way to isolate the vibrations of a WEC that may be transmitted
and amplified through the building, causing further annoyance and discomfort.

The four different types of noise created by wind turbine operations are
categorized as follows:

e Tonal: discrete frequency noise caused by meshing gears, the yaw drive,
rotational frequencies of the shafts and generators, non-linear instabilities
affecting the rotor blade surface, blunt-trailing edge vortex shedding and/or
unstable flows over slits and holes. It is possible for the hub, rotor and tower to
amplify and transmit mechanical noises (Manwell 2003). Again, this could be a
major issue for wind turbines placed on buildings since noise could be
transmitted through the tower to the building; one idea is to integrate wind
power into a building’s design and conduct the noise away from the structure.

e Broadband: continuous sound pressure distribution with frequencies over 100Hz,

usually caused by atmospheric turbulence interfering with the blades, creating a
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‘whooshing’ or ‘swishing’ sounds. The higher the tip speed or tip speed ratio, the
louder the noise (Manwell 2003).

e Low-frequency: noise from 20-100Hz that is usually detected downwind of a
turbine, caused wake shedding from blades or the interference of the tower with
the flow over a blade such that every time a blade passes by the tower, noise is
created (Manwell 2003).

e Impulsive: short thumps varying in amplitude with time, which may be caused
by a disturbance of the flow around a tower or downwind machine and its
interaction with the turbine blades, but could also be caused by sudden
aerodynamic changes in the blades such as the deployment of actuators or breaks

(Manwell 2003).

Fortunately, there are many ways to mitigate noise from a turbine and even
retrofit older turbines to be noise compliant: gear teeth can be fabricated with a special
tinish, low-speed cooling fans can be used, components can be mounted in the nacelle as
opposed to the ground, acoustic insulation and baffles can be added to the nacelle,
vibration isolators and soft mounts can be utilized in addition to designing new turbines
with noise minimization as a priority (Manwell 2003).

While there are no international standards governing noise regulation (and there
is no formal federal noise regulation within the United States, only guidelines from the
EPA exist), the table below compares noise standards of several different countries; note

that all values are in decibels (Manwell 2003):
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Country Commercial Mixed Residential Rural

Denmark 40 45
Germany
day 65 60 55 50
night 50 45 40 35
Netherlands
day 50 45 40
night 40 35 30

Figure 1. Noise standards (in decibels) for several European countries (Manwell
2003).

In addition, it is not unusual for tonal noises to suffer a deduction in allowable
levels, usually around 5 decibels (Manwell 2003). It does not appear that many studies
have been done on how the noise from wind turbines might affect animals such as house
pets. Animals have much more acute hearing compared with humans, and frequencies

that might not bother people could in fact be very disruptive to animals.

Avian Issues

In the late 1980s, it was found that many golden eagles and red-tailed hawks,
which are federally protected species, were being killed at Altamont Pass by some
interaction with the wind turbines or high voltage lines in the wind farm. Bird migration
through wind farms is also an issue due to possible violations of the Migratory Bird
Treaty Act, in addition to the Endangered Species Act. There have been major bird kill

reports in the United States as well as in some wind farms across Europe (Manwell 2003).

Adverse effects on avian life are listed as follows (Manwell 2003):

e Bird electrocution and collision



¢ Changes to foraging, nesting and breeding habits
e Migratory alterations

e Reduction of available habitat

Positive effects on avian life, however, include the protection of the environment,
which means less available habitat loss due to pollution. Wind farms might also be able
to provide perch and nest sites on towers, and offer further protection from predators
(Manwell 2003).

Some mitigation concepts include the avoidance of siting wind turbines in areas
of high bird population or migratory paths, using fewer and larger turbines to reduce
the general air space used by wind farms in order to number of impacts, alternate tower
designs with less perches and unguyed structures, relocation of nests from a wind farm
to a more suitable habitat, prey base management with live traps to rid the wind farm of
undesired prey, buried electrical lines to reduce electrocution and, of course, site specific
studies of a wind farms affects on avian life (Manwell 2003).

Unfortunately, good wind sites are often areas that attract birds (Manwell 2003).
Fortunately, however, it seems less likely that a flock of birds will migrate over a city,
making the placement of WECs in urban areas an ideal choice to help lower bird kills
due to WECs. Studies on migration patterns of birds around urban areas can be utilized
to better assess this risk. However, birds already face many other hazards in an

urbanized area, such as building ventilation fans, windows and electrocution.
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Land Use

The one fortuitous aspect of utilizing wind power within an urban environment
is that placing wind turbines on building roofs may virtually eliminate many land-use
issues. Major land-use issues include the amount of land required to create enough
energy to be useful, rural preservation, placement of access roads and erosion. Usually,
however, wind farms are placed within agricultural areas, allowing for agricultural and
wind farming (Manwell 2003). Placing a farm of WECs (WECs distributed over an urban
environment, such as the surfaces of a building or group of buildings) further expands

on the idea of utilizing land for multiple uses.

Safety Concerns

Mechanical safety is the greatest source of concern. A study has shown, however,
that the chances of blade that breaks off actually hitting a person is 2%, though it’s
chances of breaking off are considerably less such that it is possible to have a wind plant
in an urban area without needing a security perimeter (Manfred 1991). As the
population density of an urban development increases, however, the chances of a person
being hit by a thrown blade can go up, so the only way a safety evaluation should be
assessed is by looking at the probability of a blade breakage. Some useful studies to
correlate results with would be heliport safety studies for that area.

Unfortunately for potential urban wind sites, many permitting agencies have
required a buffer zone between the turbine and residential areas and public travel ways

to mitigate the event of a blade throw (Manwell 2003). Again, however, this currently
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only applies to certain forms of WECs, such as horizontal axis turbines, not all WECs;
further studies of the safety effects of urban WECs requires further consideration.

Some safety concerns that can adversely affect an urban area concern falling or
thrown ice (either due to accumulated ice melting, or the start of a turbine whose blades
have iced over), collapse of the tower or any other part of the turbine, fire and
maintenance hazard, and health effects due to the electromagnetic fields produced by

the turbine itself (Manwell 2003).

1.1.2 Urban Wind Energy Converter Survey

While there are not many readily available WECs for current use in urban areas,
technology is quickly advancing and some ideas are being developed and, in some cases,
implemented around the world. The Aeolian Roof Wind Energy System™ (Tyler 2002),
Aeolian Towers™ (Tyler 2002), the Vawtex (ASHRAE 2003) and Architectural WindR
(AeroVironment 2004) are a few examples of developing or currently used technologies
to utilize wind energy in urban environments.

Tyler proposes that building rooftops be integrated with an Aeolian Roof Wind
Energy System™. This design requires a properly oriented building and a roof built with
specifications that take advantage of aerodynamics over rooftops. But cross flow
turbines capture a relatively wide selection of wind angles, even though they are static
concentrators (Tyler 2002). This is a good idea for an area where the wind blows
predominately from one direction, but can result in a significant drop in energy capture

for areas with many contributing wind sectors.

20



Such a system will limit visual appearance, and the small diameter turbine does
not require the use of a gearbox, cutting down on noise (Tyler 2002). The simplicity of
this design may cut down on maintenance and overall cost. This system’s design also
provides a simple way to integrate solar and wind power (Tyler 2002). While this system
appears to work best with long, relatively low and narrow buildings, it will probably not

work in an urban city with a tall skyline.

Figure 2. Aeolian Roof concept.

The Aeolian Towers™ concept employs the use of a device attached to a tower,
and due to corner attachment can be acoustically insulated (Tyler 2002). This shows that
noise issues may be effectively mitigated. Another advantage to both designs is that they

can be placed in areas with little or no power transmission lines (Tyler 2002).

Aeolian Tower (Tyler, 2002)

Figure 3. Aeolian Tower concept.
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Two other examples of developing urban wind energy converters are the Vawtex,
or Vertical Axis Wind Turbine Extractor, and the Architectural Wind®R system. The
Vawtex, designed by the Harare engineering firm, Ove Arup, utilizes the wind to cool
buildings in Zimbabwe. It is a vertical axis turbine, supposedly allowing it to capture
more wind power than a horizontal axis turbine as the wind changes directions. In
addition, the Vawtex can be constructed out of local materials, making it an
environmentally friendly and viable alternative for poorer areas (ASHRAE 2003).
Architectural WindR®, designed by AeroVironment, is an easily installable set of
horizontal axis wind turbines with cages around them (for blade safety issues) that can
sit on the top of an architectural wall of a building. It is unobtrusive and can generate up
to 2.4 kW in an area of approximately 9.3 square meters (100 square feet), yielding an

average power density of 240 Watts per square meter (AeroVironment 2005).

FIEIRINERAEAY

Figure 1 - 2.4 kW demonstration system (approximately 4° tall by 25° long)

Wind turbine in Zimbabwe.

Vawtex Architectural Wind®
(ASHEAE, 2003) {AeroVironment, 2004)

Figure 4. Vawtex and Architectural Wind® pictures.
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Another company, Aerotecture International, Inc., has an urban WEC and has
reported actual production of the Aeroturbine, and currently claims to have already
made several sales of this device. The website for this company gives a power curve for
the turbine, along with a conceptual drawing (shown left) and picture (shown right), in

Figure 5 (Aerotecture 2006).

RS L
] L \%‘ ]
Figure 5. Concept drawing of an Aerotecture Aeroturbine and vertical mouhting on
arooftop.

Since this was the only WEC designed specifically for urban use that had
substantial information reported, such as a power curve and reported actual sales, the
Aeroturbine was chosen for comparative power production analysis to be displayed in
the Results section of this report.

Other urban WECs were revealed during the CWEC forum held in San Diego
from December 12 to December 14, 2005, but substantive information has yet to be
obtained about these devices. More information on the proceedings of the forum can be

found at http://cwec.ucdavis.edu/forum2005/proceedings.
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2.0 Methods

Several steps were implemented in the analysis for this study: wind-tunnel
testing was used to acquire data; San Francisco wind records were digitized and
compiled into useful hourly wind information; various computer codes and applications

were used to reduce the raw data acquired through wind-tunnel testing.

2.1 Wind-tunnel Testing

Wind-tunnel testing was the method used to gather data for this study. The
Atmospheric Boundary Layer Wind Tunnel was used to perform all testing due to the
extensive testing of pedestrian-level winds in San Francisco previously conducted there.
The wind tunnel itself, along with methods for setup of the tests, is described in detail in
the next few sections. Validation of wind-tunnel testing has been conducted on
numerous occasions and is not a part of this thesis study; thus it will only be recapped in
this section. A more thorough investigation into the validation of wind-tunnel studies is
conducted in Appendices C and D (modified from Coquilla 2002).

In order to obtain flow similarity between wind-tunnel and full-scale flows, flow
similarity parameters must be defined. Using the conservation of mass, momentum and
energy equations for turbulent flow, applying the Boussinesq density approximation,

defining non-dimensional quantities and substituting into these equations will yield

several dimensionless equations: continuity, momentum and turbulent energy equations.

From these equations, the following non-dimensional parameters are observed (Coquilla

2002):
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where U is the speed of the fluid, L is the length in question, Q is the angular rotation, g
is gravity, T is temperature (Kelvin), p is the density of the fluid, cp is the heat capacity of
the fluid, v is the kinematic viscosity and « is the thermal conductivity of the fluid.

The Rossby number shows the magnitude of the Coriolis effect. Typically, if the
modeled area is less than 5 kilometers in length or if measurements are confined to a
height below the boundary layer, as was the case in this study, this effect is negligible
and the Rossby number is ignored (Coquilla 2002).

The densimetric Froude number is the ratio of the fluid’s inertial to buoyant
forces. Since the wind tunnel simulates a neutrally stable atmospheric condition,
buoyant forces are negligible and the Froude number goes toward infinity, and can be
disregarded in this analysis (Coquilla 2002).

The Prandtl number is matched between the wind-tunnel and full-scale

measurements since the fluid, air, is the same. The Eckert number concerns compressible
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flow, and since the speed of the air in the wind tunnel, as well as the speed of the air at
full-scale, is low, this number is negligible (Coquilla 2002).

The involvement of the Reynolds number is very important in this study. It
would be unrealistic to try and try and match the full-scale Reynolds number in this
wind-tunnel study due to the geometric downsizing of the model. Instead of matching
the wind-tunnel Reynolds number with the full-scale value, Reynolds number
independence was obtained. According to Sutton (1949), if the roughness Reynolds

UxZ
number, Re, = &, is less than or equal to 2.5, where U« is the friction speed of the
v

fluid and zo is the roughness height, Reynolds number independence is achieved, and
the large scale turbulence occurring in full-scale is properly simulated in the wind
tunnel. Using a free stream velocity of approximately 3.8 meters per second yields a
friction speed of 0.24 meters per second and a roughness height of 0.0025 meters, the
wind-tunnel tests conducted in this study satisfy this condition (Coquilla 2002).

Other conditions that need to be satisfied are the matching of the power-law,
Jensen’s length scale criterion, matching H/d if H/3 is greater than 20 percent (H is the
height at which the measurement is made in the wind tunnel), otherwise just satisfying
H/3 is less than 0.2 is sufficient for the lower 20% of the boundary layer (it does not have
to match under this condition), and limiting the cross-sectional area of the test section in
the wind tunnel blocked by the model to less than 5%-15% of the total cross-sectional

area (this is satisfied by choosing a small enough model, as done in this study) to assures
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that the simulated flow will not be affected by any stream wise pressure gradients

(Coquilla 2002).

H a
The power law, —z[—J , where a is the power-law exponent, U is the

o

0
velocity at height H, U, is the mean-free velocity of the wind above the boundary layer

of height 6 and z is again the roughness height (Coquilla 2002), is matched in the wind
tunnel by arranging the roughness elements, which are 2 inch by 4 inch wooden blocks,
12 inches in length, laid out on the floor upwind of the test section, in a manner
previously determined to give that value. For San Francisco, the typical value for a is 0.3,
which was closely matched in the wind tunnel for this study.

Jensen’s length scale criterion requires matching of the ratio of the roughness
height to the building height, or zo/H, between wind-tunnel and full-scale simulations
(Coquilla 2005). Since this study geometrically scaled the model and roughness height,
this criterion is satisfied.

Due to the law-of-the-wall, the condition of keeping H/$ less than 0.2 for the
lower 20% of the boundary layer, meaning that if H/3 in full-scale is less than 0.2, the
full-scale value does not have to be matched in the wind-tunnel simulation, H/8 for the
wind tunnel needs only to be less than 0.2, is met (Coquilla 2002). Since the boundary
layer height in the ABLWT is approximately 1 meter, limiting the height at which
measurements are taken to no more than 20 centimeters unless H/$ is matched above
that height. Fortunately, due to the tall buildings” obstruction of the Ekman spiral, it is

possible to obtain good data for a measurement height above 20 centimeters.
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2.1.1 The Atmospheric Boundary Layer Wind Tunnel

The Atmospheric Boundary Layer Wind Tunnel, or ABLWT, shown in Figure 6,
is located at the University of California, Davis and simulates flow under the earth’s
turbulent boundary layer. The ABLWT consists of three main sections: the flow
development section, the test section and the diffuser section (Coquilla 2002). Flow
enters through the inlet, passing through flow straighteners and spires, then travels over
a long fetch of roughness elements, blocks of wood no taller than 2 inches arranged in a
specific pattern to simulate the proper flow profile, in the flow development section
(Coquilla 2002). The flow has the proper turbulence characteristics by the time it reaches
the test section, which has a Plexiglas window on either side for visibility. The flow then
exits after passing through the diffuser section, flow straighteners and the fan (Coquilla

2002). More detailed specifications of the wind tunnel are located in Appendix A.

Plexiglas window
Flow straighteners Roughness Test section
and spires elements S
. w straighteners
Adjustable g
A /_false ceiling —-B ] _’{C[Fan
AN AL AL AR AR LS B Ba - ——— N,
! ' ' '/ —~| |Diffuser
Flow —>» Flow development section ,,y/" soction
direction £1
rard 77227 777777777 ////4//////////4//}'//61/
A
Three-dimensional
motor drive
Flow False sy‘;‘tem 2 K Circular
straighteners diff
¢ ooling ] -3-dimensional user
= transversing
Three system Pulley belt system
vertical
Hot-wire
10 hp O.C. motor
spires probe P
-A section B-B section C-C
Entrance Test section Fan drive system

Figure 6. Schematic of the Atmospheric Boundary Layer Wind Tunnel at UC Davis
(Coquilla 2005).
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2.1.2 Wind Tunnel Setup

A model of the financial district, and surrounding areas as needed, of San
Francisco was used for all wind-tunnel testing. The model scale was 1:600, or one inch
(0.0254 meters) in the wind tunnel equals fifty feet (15.24 meters) in full-scale. This
model is broken up into blocks, not necessarily corresponding to city blocks, and piece
together like a puzzle to create the area of downtown shown in Figure 7.

Once a wind direction is chosen for testing, the test building’s model block is
centered in the test section of the wind tunnel, and surrounding blocks are placed
around it to fill up the entire test section with model blocks. Model blocks are included
far enough upwind (typically 600 meters or 1970 feet, full-scale) of the test building to
ensure proper simulation of the effects of these buildings on the wind flow as it travels
to the test building, just as they would in the city. Any model blocks that would only
partially fit into the wind tunnel were simulated with wooden blocks of approximate
size to replicate any buildings that would otherwise be missing because those blocks do
not fit. Once testing of the wind direction is finished, the model blocks can be rotated to
simulate a new wind direction (of course, some model blocks will rotate out of the test
section and some new ones will have to fill in areas where there are none). Any area of
the city or wind direction can be simulated by rotating the model blocks or changing
them out for other model blocks, making it relatively simple to test as many wind
directions as needed in a compressed amount of time when compared to full-scale

testing.
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Figure 7. Conflguratlon of San FranC|sco wind tunnel model blocks (modified from

ESA 2006).

Building Selection

There are many tall buildings suitable for study in downtown San Francisco. The
buildings that were chosen for analysis met several subjective criteria: each building is
taller than the average building height of its respective local area; each building’s height
meets or exceeds 76 meters (approximately 250 feet); each building or tower of the

building is of relatively conventional shape, meaning rectangular without extra

architectural detail.
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Two specific areas of downtown San Francisco were considered for analysis. The
first area, near 10th Street and Market Street, is well known for having high winds and
has several tall buildings in its vicinity. The buildings chosen at this location are the
California State Automobile Association (CSAA) Building, on the northeast corner of
Fell Street and Van Ness Avenue; the Bank of America building, on the southwest corner
of 11th and Market Streets, and the Fox Plaza building, on the northeast corner of Polk
and Market Streets. The second area, Folsom Street and Main Street, was selected due to
its proximity to the bay, where downwind conditions are unlikely to change due to lack
of land. The two buildings at this locations are not yet built, but are have been approved
and are scheduled to replace two parking lots, which are just south of Folsom Street and
are separated by Main Street. The building to the west of Main Street is labeled Folsom
and Main West, and the building to the east of Main Street is labeled Folsom and Main
East. Though each building has two towers, only one tower was analyzed for each
building. The towers studied in this project were both the western most towers.

While every attempt was made to ensure model correctness at the time of testing,
the city itself is in a constant state of change. Two settings were tested for the 10th and
Market area buildings: existing setting, which means that buildings included in the
model are buildings that existed at the time of testing, but also includes buildings that
have been approved for construction by the city and are scheduled to be built within the
next few years; and cumulative setting, which includes building developments that are
going through the city’s approval process, and may or may not be built in the future,

either replacing existing buildings or empty lots. The two buildings at Folsom Street
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and Main Street were tested for the existing setting only due to limited information on
the area’s development.

Figures 8 and 9 show the differences between the existing and cumulative
settings for the Fox Plaza, CSAA and Bank of America Buildings. Figures 10 and 11
show how this area was set up in the wind tunnel for testing. All of the buildings near
10th Street and Market Street, Fox Plaza, the CSAA and Bank of America Buildings,
were tested for the same wind-tunnel setup since their model blocks all fit in the wind
tunnel at once. An overview of the surrounding area of the Folsom and Main Street
buildings is illustrated in Figure 13. Folsom and Main East and West buildings were
tested in another wind-tunnel setup. All pictures were taken as angled overviews, where
up is the upwind direction, or the direction from which the wind is coming (i.e., the
wind is going from top to bottom in the picture). While Folsom and Main East and
Folsom and Main West buildings are not shown for the west wind direction due to
camera issues during testing, the setup can be pieced together by looking at Figure 12,
which shows the southwest wind direction wind-tunnel setup and the west-northwest
wind direction wind-tunnel setup. The most important information about that wind
direction is that the heights of the buildings upwind are relatively shorter than for the

other wind directions.
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Figure 8. Overview of 10th and Maret Street buildings, existing setting.
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Figure 9. Overview of 10th and Market Street buildings, cumulative setting.
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Figure 10. 10th and Market Street buildings, orthwest, west-northwest, west
and southwest wind directions, shown left-to-right, for the existing setting (winds
blow from top to bottom).

Figure 11. 10th and Market Street buildings, northwest, west-northwest, west and
southwest wind directions, shown left-to-right, for the cumulative setting (winds
blow from top to bottom).

4 . 85 _'
Figure 12. Folsom and Main East and West buildings, northwest, west-northwest

and southwest wind directions, shown left-to-right, for the existing setting (winds
blow from top to bottom).
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Folsom arfd Main East

Figure 13. Overview of the Folom and Main East and West buildings.

Measurement Locations

Measurement locations, also referred to as points, were chosen to be near the
surface of the buildings, including measurements starting at the base and continuing up
the centers of the faces or corners of the building in increments of 15.24 meters (50 feet)
until the top edge of the building is reached. The numbering scheme for each building is
illustrated in Figure 14 through Figure 18, and is described in Table 1 through Table 5,
which give the heights of each point. If the building has a tower and base architecture, as
is the case with the Bank of America building and the Folsom East and West buildings,
the base is ignored in the study. Points that would be covered by adjacent buildings or
structures are also ignored.

All measurement positions are correct within a full-scale radius of 1.5 meters (5
feet) in any direction due to measurement position uncertainty. While attempts were

made to place the hotwire as close to the surface of the building without touching it,
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since neither the probe’s support nor the buildings were completely straight, there were
a few instances where there was an angle between the probe’s support and the building,

leading to a distance away from the building of up to 3 meters (10 feet) in full-scale.

Figure 14. Fox Plaza point'locations (ooftop locations are highlighted).
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Figure 16. Bank of America Building point locations (rooftop locations are
highlighted).
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Figure 17. Folsom and Main East point locations (rooftop locations are
highlighted).

Figure 18. Folsom and Main West point locations (rooftop locations are
highlighted).
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Table 3. Bank of America Building point location descriptions.
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Table 4. Folsom and Main East point location descriptions.
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Table 5. Folsom and Main West point location descriptions.



2.2 Wind Data

One of the reasons that San Francisco was chosen for this study is because of its
relatively high winds. The meteorological wind data used for the analysis of San
Francisco was obtained from an anemometer at the old Federal Building at 50 U.N. Plaza
positioned at a height of 40.2 meters (132 feet) above ground level. Data was taken from
1945 through 1947 and is reported in percentages of occurrence per year. Originally, the
data was broken down into 3-hour increments per month (i.e. January 12am through
2am, January 3am through 5am, December 12pm through 3pm, etc.). A Microsoft Excel®
spreadsheet then was used to digitize and compile this wind data into percentages of
time per year, as shown in Table 6. Table 6 shows the percentage of time per year the
winds between two speeds, forming a wind bin, blow from a certain direction. The wind
direction is indicated in the left column, and the wind bins are located in the top rows of
the table and are broken down into knots, miles per hour and meters per second. The
table also shows the total percent time the wind blows from a certain direction, as well
as the average wind speeds for each wind direction.

Certain calculations require that the wind data also be separated into a percent
exceeded wind speed table. A percent exceeded wind speed is the wind speed that is
exceeded for a specified percent of time during a typical year. For example, a ten-percent
exceeded wind speed would be the wind speed that is exceeded for ten-percent of the
time during a typical year, and would be written as Uiox. These values can be separated
by wind direction as well; for example, Uioxsw would be the wind speed that is exceeded

ten-percent of the time as the wind blows from the southwest. When including a

4
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directional reference in the percent exceeded wind speed, however, the percent time
exceeded is still in reference to all occurrences in one year.

The cumulative wind speeds that form the percent exceeded wind speed table
are calculated by starting at the highest recorded wind speed, adding up all of the
occurrences (or percentages per year), creating one data point of speed versus percent
time exceeded. The next data point would be the next lowest wind speed’s percent
occurrence plus the higher wind speed’s percent occurrence, using that wind speed and
the cumulative percent exceeded. This calculation continues until the speed is zero, and
the data verifies that the winds exceed zero for approximately 100-percent of the time.
Figure 19 shows the percent exceeded wind speeds for the San Francisco wind data, and

is also separated by wind direction.

Wind-tunnel testing did not include an analysis of 16 wind directions; rather,
four wind directions were chosen for testing: northwest, west-northwest, west and
southwest winds were simulated in the wind tunnel. Northwest, west-northwest and
west wind directions were chosen since they had the highest number of occurrences of
all wind directions: 207 hours per year, 244 hours per year and 131 hours per year,
respectively. The southwest wind direction was chosen to test any buildings south of
Market Street in San Francisco since the street grids align with the southwest such that

wind-tunnel effects may occur, causing higher wind speeds along these streets.
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Since wind conditions should not significantly change with a slight change in the
wind’s angle, certain winds were grouped together for the percent exceeded wind
speed’s percent exceeded time values. Ideally, half of each neighboring wind speed
would be included with the tested wind’s data. Northwest included half of the north-
northwest information, though none of west-northwest’s data since west-northwest is
analyzed separately. Similarly, west-northwest does not include any information from
other wind directions because northwest and west winds are analyzed individually.
West includes half of west-southwest’s information. Southwest includes half of west-
southwest’s information as well as half of south-southwest’s information. All other
winds are lumped together and referred to as the wind direction other, and are summed
together, excluding any parts of wind bins used in the analysis for the above mentioned
four wind direction. All refers to the cumulative effects of all wind directions, and equals
the sum of the data from the four wind directions and the data from the other wind
directions.

Data points for each wind direction were then connected with a smoothed line in
Excel®. Since the wind bins given in Table 6 re rather large, covering at least 3 knots in
any given wind bin, data points are relatively more sparse than the ideal, and the
smoothed line gives a realistic interpolation between points. It was desired for the
percentages of time exceeded to be chosen, and the corresponding velocities were
catalogued by hand from the graph accordingly. Time bins of five-percent were chosen,
creating twenty data points for the percent wind speed exceeded table. This gave more

data points than the original data set.
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First, the wind speed from all directions was found for a given percentage of
time exceeded. Since this is the percent exceeded wind for the whole year, the
corresponding percent exceeded wind speeds for each wind direction are the same
speed. The times for which these occur, however, are different for each wind direction;
i.e., the percent times that this percent exceeded wind speed occurs for each wind
direction analyzed (northwest, west-northwest, west, southwest and others) must add
up to the percentage of time that wind speed occurs for all wind directions. This is true
simply by the definition of how the wind directions’” percentages of occurrences were
defined. These results are shown in Table 7, where the left column indicates wind
direction, the upper rows illustrate the wind speeds, and the data is given as the

percentage of time that wind speed is exceeded per year during a typical year.
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Table 6. San Francisco wind data in percent occurrence per year by wind direction

and speed.
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Table 7. San Francisco wind data in percent exceeded wind speeds, calculated

manually.
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Figure 19. Percent exceeded time versus wind speed (knots as given in Table 6).
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2.2.1 San Francisco Winds from 6am — 8pm

While the above analysis included San Francisco winds for all the hours in a day,
there do exist hours for which energy usage is higher than average. San Francisco’s
municipal code (1985) has wind ordinances that limit the creation of high wind speeds
due to development projects between the hours of 7am and 6pm, which means that the
city considers itself active between those hours, making this a good range of times to
perform wind analyses (Arens 1989) . Because the wind data for the years 1945 through
1947 was taken in three-hour averages, the following analysis will include wind data
from 6am to 8pm. Methods for calculating annual wind data and percent exceedences
occurring between 6am and 8pm are equivalent to the twenty-four hour per day wind
data examined and illustrated by Tables 6 and 7. Table 8 shows the distributions of
winds between 6am and 8pm for a typical year; Figure 20 illustrates the percent
exceeded times versus wind speeds for the hours of 6am to 8pm for all wind directions
and includes a breakdown by the four wind-tunnel tested wind directions; and Table 9
shows the hand tabulations of percent exceeded winds, broken into time bins of five-

percent per year.
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Table 8. San Francisco wind data in percent occurrence per year by wind direction

and speed from 6am — 8pm.
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Table 9. San Francisco wind data in percent exceeded wind speeds from 6am —

8pm, calculated manually.
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Figure 20. Percent exceeded time versus wind speed (knots as given in original
wind charts) from 6am — 8pm.

2.2.2 Atmospheric Stability Conditions

There are various stability conditions that occur within the atmospheric
boundary layer. Those stability conditions are illustrated in Table 10. Since no heating or
cooling elements are employed in this study, and due to the scale of the boundary layer
simulated in the wind tunnel, the wind tunnel simulated only neutrally stable flow
conditions. Fortunately, Pasquill (1971) suggests that in strong winds, thermal
stratification effects in the lower portion of the boundary layer are negligible as shown
in the table. In addition, the tall building structures in the urban areas of San Francisco

further add to the mixing within the boundary layer due to the turbulent wakes



shedding from the upwind structures. Taking this into consideration, the neutrally

stable flow conditions in the wind-tunnel study are realistic.

Meteorological Conditions Defining Fasquill Turbulence Type (Gifford 1976)

Surface Wind Speed

[tr1/5] Daytirme Insulation Mighttitne Conditions™
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or 448 low =3/8
Lo high strong |moderate| slight clouds cloudiness
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? Applies to heavy overcast day ov might.
*=*Degree of clowdiness s that fraction of sky ebove the local apparent horizon that & covered by clouds.

& = Extrernely unstable conditions
B = Moderately unstable conditions
C = Slightly unstable conditions

D = Meutral conditions

E = Slightly stable conditions

F = Moderately stabls conditions

Table 10. Stability criteria: meteorological conditions defining Pasquill Turbulence
Type (Gifford 1976).

2.3 Data Collection

Wind-tunnel measurements of the mean velocity, R-values and turbulence
intensity were performed using hotwire anemometry. The hotwire used in this study
was a standard Thermo Systems Inc. (TSI) single hotwire sensor, model 1210-60. The
sensor was placed at the end of a 50 centimeter TSI probe support, model 1150. The
probe support was attached to a platform of a three-dimensional positioning system

above the test section of the ABLWT. The probe was connected to a 10 meter long
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shielded tri-axial cable which ran from the end of the probe support to a TSI model IFA
(Intelligent Flow Analyzer) 100, which is a constant temperature thermal-anemometry
flow analyzer with included signal conditioner. Each hotwire probe used in this study
was calibrated using the ABLWT facility and equipment before testing.

The IFA 100 was run by a LabVIEW software virtual instrument (VI), which
initialized and configured the analog-to-digital data acquisition board by United
Electronics Inc., linked to a multi-channel daughter board connected to the output of the
IFA 100. The multi-channel daughter board was installed in an ISA slot of a PC which
digitally stored the raw voltage data from each measurement by saving it under a
specified filename.

Each measurement was made by collecting the raw voltages at a sampling rate of
1000 Hz with a total of 30,000 samples in order to satisfy the Nyquist sampling theorem
for which the average wind tunnel turbulence signal was 300 Hz. Further information

and specifications are located in Appendix B.

2.4 Data Reduction and Analysis

Data reduction and analysis were done in several steps, explained in detail in
this section and summarized as follows: first, the raw data was reduced; second, the
estimated full-scale speeds were calculated for each measurement location, also referred
to as receptor location or point; next, wind speed information for each point was used to

estimate power densities as well as predict annual energy outputs for multiple WECs.
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2.4.1 Reducing the Raw Data

Since the raw data acquired by LabVIEW was collected in the form of one file
with 30,000 voltage readings for each measurement taken, a Quick Basic code was used
to run each reading of the raw data through the calibration of the hotwire to obtain a
wind speed for each measurement point. The code then calculates the wind speed ratio
and turbulence intensity values for each measurement. The wind speed ratio (R- value), is
defined as the ratio of the wind tunnel velocity at the measurement location over the
wind tunnel velocity at the reference height, which in this case is 0.70 meters (2.3 feet),
and the turbulence intensity is defined as the “root mean square of the instantaneous

deviations from the mean velocity, divided by the mean velocity” (Arens 1989).

2.4.2 Estimated Full-scale Speed Calculations

After the raw data is reduced into R-values and the percent exceeded wind
speeds are determined for each wind direction for the full-scale, the estimated full-scale
speeds are calculated. All calculations were done using an Excel® spreadsheet. The

definitions below are used to describe the variables used in the following equations:

e Uz = the percent exceeded wind speed; for example, Uios is the wind speed
exceeded 10% of the time in a typical year.

e tydirection = the percentage of time U« is exceeded for the specified wind direction;
for example, t7susw is the percentage of time winds from the southwest exceed

U7s%.

57



Rdirection = the R-value of one point for the specified wind direction; for example,
Rwnw is the R-value of a single point for the west-northwest wind direction.
CFdirection = the correction factor for a specified wind direction; for example, CFw is
the correction factor to be applied west winds.

Upoint = the wind speed at the point.

Uret = the reference wind speed.

U- = free stream wind speed.

Ugeostropic = the geostropic wind speed.

zref = the height corresponding to Uref, which for full-scale is 40.2 meters (132
feet), or the height of the anemometer on the Old Federal Building (White 1992).
Zpoint = the height corresponding to Upoint.

0 = the boundary layer height, which is 402.3 meters (1320 feet) for San Francisco
(White 1992).

o = the power-law exponent, which is 0.3 for San Francisco (White 1992).

The subscript “direction” shall denote that the value is for one wind direction.
The actual wind direction in consideration may also be used instead of the word
“direction”.

The subscript “wind tunnel” refers to wind tunnel data.

The subscript “full-scale” refers to full-scale values.

The power-law is used to show the relationship of full-scale wind speeds to

measured wind speeds in the wind tunnel:
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[Upoint ] _ (Upoint J _ (zpoint ] (1)
Uref Full Scale Uref Wind Tunnel Zref

Rearranging the variables and incorporating U~ yields (White, 1992):

(Uref )Full Scale

(Upoint >Fu11 Scale (Upoint )Wind Tunnel (U f)W' d Tunnel -
ref /Wind Tunne

)

Uy,
’ (Uref )Wind Tunnel ( Uref

(U _ ) _ Upoint
pomnt Jpy|i Scale U .
0 Wind Tunnel

jWind Tunnel

By definition, (Upoint/Ure) is the R-value. However, wind tunnel data is not
accurate at the level of U~ due to the Coriolis effect in full-scale (White 1992). Therefore,
it is desired to have another relationship between all of these variables. Wind tunnel
data collected by testing a model of the old Federal Building shows that (U~/Urf) is equal
to 2. Using the information for the boundary layer height, the height of the reference
velocity and power-law exponent for San Francisco, the power-law yields the following

(White 1992):

U z ¢ U i
[U#J = (%fj =0.5 or [gIethmplc] =2 3)
geostropic Full Scale ref Full Scale



which correlates quite well with the wind tunnel results described above. Substituting
this finding into the above equations gives the relationship between the reference wind
speed, R-value and full-scale speed at a specific point with wind from one wind

direction (White, 1992):

(Upoint )Full Scale 2-R- (Uref )Full Scale (4)

Since the only R-values obtained were for the four wind directions tested, the R-
value for the others was calculated as the weighted average of the R-values from the

tested wind directions:

R Ryw “ toonw + Rywnw * toownw + Rw ~ togw + Row “ tossw + Rothers * toothers 5)

others —

toonw T+ Loownw T topw + Lossw + Togothers

While the wind data for San Francisco between 1945 and 1947 was taken by an
anemometer on top of the Federal Building, the surrounding buildings were close
enough to the Federal Building to influence the anemometer readings. In order to find a
correction for the changes in wind speeds due to the influence of these buildings, the
model of the old Federal Building area was tested in the wind tunnel. It was found that
the speeds at the points in questions should be multiplied by a correction factor, or CF, for
each of the various wind directions tested to account for these influences (White 1992).

These correction factors are 1.02 for northwest, 1.00 for west-northwest, 0.96 for west,
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0.85 for southwest and 0.96 for all other wind directions. Since Tables 6 through 9
illustrate the wind conditions at the height of the anemometer on top of the Federal
Building as the area existed from 1945 to 1947, these correction factors were applied to
the reduced data, and the new equation to determine the full-scale speed at a specific

point becomes (White 1992):

(Upoint direction )Full Scale =2 Rdirection ’ CFdirection '(Uref )FuHScale (6)

The Upoint input into the equation can either be a regular speed from the San
Francisco wind data, or can be in the form of U to obtain the exceeded wind speed at
the point. This was done for this study’s analysis, and the percent exceeded wind speed
was found for each direction, northwest, west-northwest, west, southwest and others,
and each point, in increments of five-percent time exceeded (i.e. percent exceedences
ranged from 5- to 100-percent in increments of 5-percent). Once these values were
obtained, the weighted average was calculated to find the average estimated full-scale (or
EFS) percent exceeded wind speed for all wind directions. This calculation was

performed for each point. The weighted average calculation was conducted as follows:

Usanw - toonw + Uogwnw toownw + Uoaw - toaw + Unisw * togsw + Uspothers * Usothers (7)

Uogrs =
foonw + Loownw T topw + tossw + togothers
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At this point, only the percent exceeded wind speeds are known. In order to

calculate the wind speeds at each point through a power curve of a specific WEC or to

obtain power densities, the wind speed histogram needs to be constructed for each point.

It is reasonable to say that if a wind speed of 5 meters per second is exceeded 80-percent
of the time, and a wind speed of 6 meters per second is exceeded 75-percent of the time,
then there is a wind speed between 5 and 6 meters per second that occurs for 5-percent
of the time in one year.

It was most reasonable for the scope of this study to take the average of the two
exceeded speeds rather than fit a curve through each data point and get a more precise
analytical solution. Therefore, the percent exceeded wind speed data was transformed
into a histogram by inputting values into the following equation, where the subscript
“%” is the still the percent exceeded (there are a total of 20 bins, as noted before, ranging

from zero-percent exceeded to one-hundred-percent exceeded), starting from Utoo%:

_ Uy + Ugsv
2

U (8)

for the time duration, in percent time per year, of t = to, 50, —to,, which is always five-

percent due to the even spacing of the percent exceeded time bins. Also, since there is no
calculation past the five-percent exceeded wind speed, a value for zero-percent exceeded
wind speed was chosen by adding two meters per second to the speed in the five-

percent exceeded case. When reviewing the wind data, it appeared that no speeds were
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recorded for more than two meters per second past the value in the five-percent
exceeded bin. The result of these calculations is a histogram with the average wind
speed for every five-percent of time in one year, or twenty wind speeds that each occur

for five-percent of the time in one year, for each point measured in the wind tunnel.

2.4.3 Error Estimates

Since the meteorological wind data for San Francisco used in this study had large
wind bins, as illustrated in Tables 6 and 8, it was necessary to manually convert the
wind data to fit into smaller wind bins. In doing so, one value must be chosen to
represent the wind speed for any given wind bin to perform further analysis. A typical
way to do this is to select the average value in the bin, or the midpoint between the
lowest and highest wind speeds in the bin. Such was the case in this study. The total
variation in the possible selection of the wind speed’s value is then equal to the
maximum wind speed, Ui+, in that bin minus the minimum wind speed, Ui, in that bin.
Therefore, the error in any wind power calculated by converting percent exceeded wind
speed to the wind speed used to run through the power curves can be estimated by
taking the cube of the differences of the exceeded wind speeds, divided by the cube of

the average and summing all twenty occurrences:

. ) 20 (U..,—U. Y
estimated error in power = . (1+1—1)

_ 3 )
i=lf Ujy +U;
(7



It is generally accepted that hotwire measurements made close to a surface are
within +5% of the true values, the calibration of the hotwire is within +2% accuracy and

the data acquisition process is 99.95% efficient (White 1989).

2.4.4 Wind Power Density Calculations

It is important to utilize quantifiable standards wherever possible. In the case of
wind energy generation, the wind power density and average wind power density
calculations give a good understanding of resource at a specific location. The wind
power density is the available power in the wind per unit area perpendicular to the
wind; if a WEC has an efficiency of 100%, this is the amount of power it would produce

for each unit area perpendicular to the flow (Manwell 2003):

pU’ (10)

where P is power, A is the unit cross-sectional area, p is the density of air, and U is the
speed of air perpendicular to the area. The total annual energy density can be calculated
by taking the histogram of speed versus hours of occurrence per year for each point
measured in the wind tunnel and inputting each speed into the above equation, then
multiplying it by the number of hours each speed occurs and summing the values (the

resulting number is in kilowatt-hours per meter squared, per year):
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The average wind power density is used to classify the “quality” of a wind site. It
takes into account the wind data at the site and performs a weighted averaging scheme

to come up with a qualitative value for the site’s resource (Manwell 2003):

1

_ 8760
:5 U3-Ke where K, = !

— 2 U3At 12
8760-U° io1 12

P
A
i is each hour in a year, At is the time elapsed for each i term (one hour, in this case), U
is the annual average wind speed and K is called the energy pattern factor. Manwell
(2003) classifies the wind resource quality from average wind power density into the

following categories:

. £<100E2—>p00r
A m
P W

e —— =400 — — good
A m

. £>700E2—> great
A m

This value then can be calculated for each measurement location on each
building so show where the “great” wind sites are. These are the most likely places to
place an anemometer for future studies since they may be of interest to potential urban

wind farm developers.
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2.4.5 Average 1kW Turbine Power Production

Although it is uncertain whether horizontal axis wind turbines (versus vertical
axis turbines or other forms of urban WECs) will be permitted for use in urban areas,
since horizontal axis wind turbines are a prevailing WEC, it is useful to see what power
could be produced by one at in an urban environment for comparison purposes. A
reasonable size horizontal axis wind turbine to be placed in an urban environment is a
1kW wind turbine. Since there are many 1kW turbine models available and it is not
desired to advertise any specific brand in this study whenever possible, an average 1kW
wind turbine power curve was created by averaging the power curves of several 1kW
wind turbines, resulting in the power curve shown in Figure 21, which also includes the
power curve for an Aeroturbine WEC as depicted on the Aerotecture International, Inc.
website found in the References of this report.

A cut-in speed of 2.5 meters per second was chosen for this simulation wind
turbine, meaning that even if the power curve shows power production available before
2.5 meters per second, the actual power produced will be zero until a wind speed of 2.5
meters per second is reached at the site. The cut-out speed for each of the turbines used
for the average either did not exist or was around 30 meters per second, so the cut-out
speed for the average 1kW wind turbine was chosen to have no cut-out speed since few
points exceeded a speed of 30 meters per second or above. Maximum power production
of 1080 Watts occurs at 12.5 meters per second.

By considering each measurement location in the wind tunnel to be an individual

wind site, as was done in previous sections of this report, the annual energy production
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of this turbine can be calculated at each measurement location on each building. This is
done by finding the corresponding power production for a given wind speed from
Figure 21 and multiplying it by the number of hours that speed occurs at the site. For
this study, each average wind speed occurred for five-percent of the time over a typical
year in the city of San Francisco; therefore, there were twenty discrete velocities used to
calculate the annual energy production at a measurement location (or point on a

building) all occurring for equal percentages of time during the year:

20
Annual Energy Production in kW - hours per year = [2%)] -8760- 3. P(Ui) (13)
i=1

where P(U) is the power production at the speed, Ui
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Figure 21. Power curves for an average 1kW horizontal axis wind turbine and an
Aerotecture WEC.
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2.4.6 Urban Wind Energy Converter Power Production

Since the Aerotecture’s Aeroturbine WEC was one of the only WECs designed
specifically for an urban environment that had a published power curve, illustrated in
Figure 21, and specifications available, it was chosen for comparison against the average
1kW wind turbine. The purpose of this analysis is not to promote the Aeroturbine, but to
have a relative comparison of power production between a well-known type of wind
turbine, which is not typically designed to be used in an urban environment, with a
WEC that is designed for that purpose. The Aeroturbine has a cut-in speed of 2.5 meters
per second, and a maximum power production of 1200 Watts at 14 meters per second
The calculations for annual power production were calculated in the same manner as
they were for the average 1kW wind turbine, only using the power curve for the

Aeroturbine instead of the curve for the average 1kW wind turbine.

3.0 Results
All of the following results presented in were calculated using the equations 1
through 13. Results are presented by area: Fox Plaza, the Bank of America and CSAA
Buildings” results are grouped together as the “10th and Market Street Buildings”. The
Folsom and Main East and West buildings are grouped together as the “Folsom and

Main Street Buildings”.
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3.1 10th and Market Street Buildings’ Results

Results for each of the buildings in the area of 10th Street and Market Street are
presented in two tables. The first table shows all points with “good” average wind
power densities. The table identifies, in the following order, the point, height above
ground level, then for the existing setting, the average wind power density, annual
power produced by the average 1kW wind turbine, annual energy produced by
Aerotecture’s Aeroturbine, the maximum turbulence intensity for all wind directions,
the average turbulence intensity and the estimated error in calculating power
production. The cumulative setting results for the same point are displayed in the next
few columns of data. Any turbulence intensities above 50 percent are marked with red,
bold faced text. The final column of data shows the ratio of the cumulative setting’s
average wind power density to the existing setting’s average wind power density. This
ratio will show how building developments could change the power production of a
WEC located at that point. Values under 0.95 are marked with red, bold faced text, and
values above 1.05 are marked with bold faced text.

Results for the Folsom and Main Street Buildings are the same as for the 10th and
Market Street Buildings” results, except that there are no values for the cumulative

setting since that setting was not wind-tunnel tested for those buildings.

69



3.1.1 Fox Plaza Results

The “good” wind resource points’ results of the wind-tunnel testing for Fox
Plaza are shown in Table 11, and the “great” wind resource points” results are in Table
12.

Average wind power densities were highest near or above the roof level. The
highest average wind power density was 1629.1 Watts per square meter at point 105125
for the existing setting, and 1488.3 for the cumulative setting. The northern face of the
building is a “great” wind resource due to its high average wind power density from
point 3 to point 8. The point that showed the most increase in average wind power
density due to local development was point 7 which had an increase of 36-percent, and
the point that showed the most decrease was point 102375 which had a decrease of 26-
percent.

The highest turbulence intensity for the existing setting of a point with “good” or
“great” wind resource was point 101000 with 67.4 percent; this point also held the
highest value for cumulative setting, at 70.5 percent. The average average wind power
density for Fox Plaza was 466.61 Watts per square meter for the existing setting and
448.81 Watts per square meter for the cumulative setting, meaning that there could be an
overall decrease in power production at this building if the city chooses to develop in

this area.
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Table 11. Results for “good” points at Fox Plaza (shown left).

Table 12. Results for “great” points at Fox Plaza (shown right).



Fox Plaza Results with Winds from 6am — 8pm

The reduced, full-scale data for Fox Plaza for winds from 6am to 8pm are
displayed in the same manner as in the previous section. The “good” wind resource
points” results of the wind-tunnel testing for the Fox Plaza are shown in Table 13, and
the “great” wind resource points’ results are in Table 14. Tables 15a and 15b show the
ratio of the average wind speed densities of 6am to 8pm case to the all hours” case for
each point tested.

The point with the highest average wind power density during the hours of 6am
to 8pm (the 15-hour day case) for the existing setting was point 105125 which had a
value of 2067.29 Watts per square meter, and the same point held the highest value,
1777.63 Watts per square meter, for the cumulative setting, All points showed an
increase in average wind power density from the 24-hour day case, demonstrating that

the winds are higher during business hours.
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Table 13. Results for “good” points at Fox Plaza from 6am — 8pm (shown left).

Table 14. Results for “great” points at Fox Plaza from 6am — 8pm (shown right).



Fox Plaza 15-hour Vs. 24-hour Day Analysis (6am - 8pm vs. all day)
Existing 15-hour Day | Existing 24-hour Day Cumulative 15-hour Day | Cumulative 24-hour Day
Average Wind Power | Average Wind Power Ratin Average Wind Power Average Wind Power Ratio
Paoint#| Density [Wm?] Density [¥im?]  |(15-hr/24-hr) Density [VWm?] Density [¥rm?] (15-hri24-hr)
Average 591.21 466.61 1.26 567.05 448.81 1.25
1 528.22 415.81 1.27 470.80 37345 1.26
2 817.53 636.71 1.28 741.34 578.78 1.28
3 910.85 710.16 1.28 897.86 T702.70 1.28
4 1024.35 800.65 1.28 985.55 771.50 1.28
5 1111.88 870.60 1.28 1043.05 817.45 1.28
5} 949.58 743.57 1.28 932.31 730.62 1.28
7 966.19 756.41 1.28 1313.71 1030.39 1.27
8 1461.47 1149.17 1.27 1357.28 1067.83 1.27
9
10
11
12 BE 62 51.71 1.29 103.85 3087 1.29
13 6704 52.16 1.29 12145 95.08 1.28
14 6022 47.10 1.28 5645 44 67 1.26
15 5630 44 .27 1.27 3675 29.09 1.26
16 4143 32.80 1.26 3404 27.03 1.26
17 7050 55.84 1.26 6817 5448 1.25
18
19
20
21 94 97 78.649 1.21 164.23 133.51 1.23
22 185.09 156.79 1.21 181.57 15045 1.21
23 27588 226.99 1.22 260.84 215449 1.21
24 327.63 27073 1.21 280.30 241.78 1.20
25 452.43 37018 1.22 J62.69 30065 1.21
26 399.91 329.24 1.21 263.02 228.00 1.19
27 25365 214.24 1.18 22519 194.13 1.16
28 39292 324.74 1.21 34419 280.26 1.19
29
30
3 134.04 105.14 1.27 103.23 80.74 1.28
32 258 .85 203.02 1.27 218.80 168.08 1.28
33 315.08 24712 1.27 268.88 209.90 1.27
34 28712 22540 1.27 2508 87 203 64 1.26
35 265.31 208.51 1.27 195.22 154.37 1.26
36 210.10 165.21 1.27 160.85 126.72 1.27
a7 589.62 465.57 1.27 796.73 625.75 1.27
38
39
40
41 287.04 22207 1.30 394 .63 30546 1.29
47 111.88 85 8f 1.30 18615 12231 1.28
43 147.27 112.92 1.30 193.14 150.99 1.28
44 162.60 12444 1.31 165.92 130.93 1.30
45 155.90 118.94 1.30 17047 13141 1.30
46 14718 11340 1.30 148 BB 113.32 1.29
47 184.17 142.74 1.29 148.53 115.20 1.29
48
44
a0
a1 5525 44 .98 1.23 5304 52.04 1.21
52 8282 BE6.81 1.24 84 83 77.00 1.23
53 10217 82.13 1.24 103.85 84.31 1.23
54 11171 a0 .45 1.24 10598 8701 1.22
55 107.29 86.05 1.25 9902 8162 1.21
56 112.29 89.88 1.26 84 82 5842 1.24
a7 128.65 102.57 1.23 10B.72 8987 1.19
58
59
G0
61 449.79 34547 1.30 508.37 394 67 1.29
G2 480.33 37114 1.29 481.83 37380 1.29
63 498.74 385.33 1.29 471.59 367.26 1.28
64 521.90 403.95 1.29 540.21 421.07 1.28
G5 731.72 564.95 1.30 713.90 554.04 1.29
&3] 638.37 493.46 1.29 634.44 490.84 1.29
67 815.72 638.85 1.28 821.74 644.81 1.27
o]
69
70
71 106.18 85.88 1.24 12231 59924 1.23
72 263.78 21213 1.24 235.11 188.82 1.25
73 220.64 177.70 1.24 314.94 254 .84 1.24
74 173.83 140 96 1.23 282 32 23081 1.22
75 175.38 143.14 1.23 264 .38 217.18 1.22
76 144 .81 118.89 1.22 181.37 18841 1.20
77 521.76 418.96 1.25 535.38 430.79 1.24
78
79
g0

Table 15a. Ratio of average wind power densities of the 6am — 8pm case to the 24-

hours per day case for Fox Plaza.
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Fox Plaza 15-hour Vs. 24-hour Day Analysis (6am - 8pm vs. all day) (¢continued)
Existing 15-hour Day | Existing 24-hour Day Cumulative 15-hour Day | Cumulative 24-hour Day
Average Wind Power | Average Wind Power Ratin Average Wind Power Average Wind Power Ratio
Point#|  Density [A¥m®] Density (WimP] | (15-hri24-hr) Density MA#m?] Density [Wm-] (15-hri24-hr)
Average 591.21 466.61 1.26 567.05 448.81 1.25
a1
B15 124.32 9547 1.28 6720 5283 1.27
a2 17.20 13.74 1.25 2583 2074 1.25
33 3987 31.76 1.25 3318 26.72 1.24
B33 5376 42.78 1.26 3980 31.84 1.24
84
a5
BAS 185.69 153.02 1.24 161.66 131.27 1.23
ag 15148 121.03 1.25 107 .64 84349 1.28
a7 175.33 144.13 1.22 264 .55 212.89 1.24
B75 934.39 734.57 1.27 891.36 T701.54 1.27
g8
101000 1986.84 1542.33 1.29 1653.29 1287.77 1.28
101125 1784.41 1418.00 1.26 1725.03 1372.49 1.26
101250 1678.11 1334.43 1.26 1650.88 1312.12 1.26
101375 1674.09 1329.53 1.26 1560.01 1241.21 1.26
101500 1744.90 1385.08 1.26 1661.50 1320.40 1.26
102000 36 53 29 4R 1.24 2341 18 81 1.24
102125 100.32 80.16 1.25 9673 77.21 1.25
102250 331.12 261.63 1.27 244936 198.60 1.26
102375 1148.26 902.48 1.27 841.48 669.91 1.26
102500 1971.92 1552.86 1.27 1790.30 1412.18 1.27
103000 19245 160.74 1.20 205.25 176.02 117
103125 1993.88 1566.34 1.27 1888.61 1488.25 1.27
103250 1692.92 1333.82 1.27 1608.35 1269.01 1.27
103375 1634.43 1289.74 1.27 1566.42 1237.78 1.27
103500 1679.35 1326.90 1.27 1577.69 1248.49 1.26
104000 196.12 156.79 1.25 228 57 18277 1.25
104125 906.33 711.96 1.27 757.39 598.01 1.27
104250 1060.68 834.66 1.27 1147.51 903.03 1.27
104375 1162.87 916.58 1.27 1137.48 896.87 1.27
104500 1187.31 936.89 1.27 1175.94 928.51 1.27
106000 22183 180.16 1.23 160.53 130.08 1.23
105125 2067.29 1629.08 1.27 1777.53 1402.92 1.27
105250 1643.50 1296.71 1.27 1642.01 1296.79 1.27
106375 1690.93 1257.98 1.26 1449.87 1145.09 1.27
108500 1621.44 1281.06 1.27 1457.32 1153.40 1.26

Table 15b. Ratio of average wind power densities of the 6am — 8pm case to the 24-
hours per day case for Fox Plaza (continued from Table 15a).

3.1.2 CSAA Building Results

The “good” wind resource points’ results of the wind-tunnel testing for the
CSAA Building are shown in Table 16, and the “great” wind resource points’ results are
in Table 17.

Average wind power densities were highest near or above the roof level. The
highest average wind power density was 2476.3 Watts per square meter at point 105125
for the existing setting, and 2181.0 Watts per square meter for the cumulative setting for
the same point. The northeastern and southwestern corner of the building are a “good”
wind resource due to its high average wind power densities from point 44 to point 49

and point 63 to point 69, respectively, for the existing setting. The southeastern corner of
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the building is a “great” wind resource due to its high average wind power densities
from point 63 to point 69 for the cumulative setting. The point that showed the most
increase due to local development was point 65 which had an increase of 103 percent,
and the point that showed the most decrease was point 102125 which had a decrease of
27 percent.

The highest turbulence intensity for the existing setting of a point with “good” or
“great” wind resource was point 815 with 60.04 percent; and point 88 held the highest
value for cumulative setting at 77.0 percent. The average of the measurement locations’
average wind power density for the CSAA building was 544.13 Watts per square meter
for the existing setting and 578.91 Watts per square meter for the cumulative setting,
meaning that there could be an overall increase in power production at this building if

the city chooses to develop in this area.
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Table 16. Results for “good” points at the CSAA Building.
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Table 17. Results for “great” points at the CSAA Building.



CSAA Building Results with Winds from 6am to 8pm

The reduced, full-scale data for Fox Plaza for winds from 6am to 8pm are
displayed in the same manner as in the previous section. The “good” wind resource
points” results of the wind-tunnel testing for the CSAA Building are shown in Table 18,
and the “great” wind resource points” results are in Table 19. Tables 20a and 20b show
the ratio of the average wind speed densities of 6am to 8pm case to the all hours’ case for
each point tested.

The point with the highest average wind power density during the hours of 6am
to 8pm (the 15-hour day case) for the existing setting was point 104125 which had a
value of 2699.04 Watts per square meter, and point 105125 held the highest value,
2748.45 Watts per square meter, for the cumulative setting, All points showed an
increase in average wind power density from the 24-hour day case, demonstrating that

the winds are higher during business hours.
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Table 18. Results for “good” points at the CSAA Building from 6am — 8pm.
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Table 19. Results for “great” points at the CSAA Building from 6am — 8pm.



CSAA Building 15-hour Vs. 24-hour Day Analysis (6am - 8pm vs. all day)
Existing 15-hour Day | Existing 24-hour Day Cumulative 15-hour Day | Cumulative 24-hour Day
Average Wind Power | Average Wind Power Ratin Average Wind Power Average Wind Power Ratio
Paoint#| Density [Wm?] Density [¥im?]  |(15-hr/24-hr) Density [VWm?] Density [¥rm?] (15-hri24-hr)
Average 689.49 544.13 1.25 732.50 578.91 1.25
1
2
3
4 421.04 328.24 1.28 509.57 398.67 1.28
5 467.27 363.74 1.28 428.48 331.62 1.29
5} 444.66 344.59 1.29 464.21 359.39 1.29
7 417.43 32427 1.29 455.13 35215 1.29
8 367.10 277.07 1.29 413.02 32067 1.29
9 698.57 540.23 1.29 739.87 571.52 1.29
10
11
12 80 62 B4.68 1.25 139.57 112.64 1.24
13 130.96 108.50 1.28 162.73 128.57 1.26
14 101.30 79.30 1.28 2368.81 184.82 1.28
15 G802 53.849 1.26 274 .54 213.31 1.29
16 42.81 34.20 1.24 152.98 118.65 1.28
17 39.00 3146 1.24 96 B4 76.13 1.27
18 2965 2384 1.24 45.15 36.01 1.25
19 105.00 86.70 1.26 G5 54 53.32 1.23
20
21 7185 6049 1.19 5984 58.12 1.20
22 185.65 153.76 1.21 185.23 127.76 1.22
23 111.34 92.81 1.20 128.04 105.56 1.21
24 46 472 80.68 1.20 8588 7182 1.19
25 103.21 86.16 1.20 7715 B5.11 1.18
26 88571 7442 1.19 64 33 5474 117
27 7383 62.72 1.18 5841 50.03 117
28 B2 97 53.74 117 5788 49.70 117
29 190.65 16748 1.19 254.02 213.04 1.19
30
3 89 64 70.74 1.27 44 85 7478 1.27
32 228.62 180.03 1.27 26583 201.84 1.27
33 327.31 258.22 1.27 J63.61 28042 1.27
34 343 58 27020 1.27 30530 24038 1.27
35 263.83 207.28 1.27 225 .87 178.36 1.27
36 198.22 156.16 1.28 170.48 134.31 1.27
a7 144 .77 113.08 1.28 135.04 10571 1.28
38 145 88 11692 1.28 131.12 102.73 1.28
39 1017.17 808.15 1.26 1051.64 830.46 1.27
40
41
47
43
44 515.87 39746 1.30 765.61 594.68 1.29
45 599.53 462.02 1.30 737.32 571.50 1.29
46 609.37 469.00 1.30 793.28 613.35 1.29
47 592.24 454.75 1.30 650.75 503.62 1.29
48 564.32 433.65 1.30 608.43 470.95 1.29
44 837.50 644.63 1.30 844.84 653.75 1.29
a0
a1 250.92 206.28 1.22 327.53 26743 1.22
52 101.10 8217 1.23 283.88 23269 1.22
53 102.58 83.04 1.24 273.00 222.08 1.23
54 12723 103.09 1.23 22874 18548 1.23
55 145.14 117.85 1.23 2168.47 175.65 1.23
56 100.30 82.82 1.21 237.84 184.14 1.23
a7 7762 54.39 1.21 16B.95 137.98 1.21
58 5825 45810 1.19 14192 11844 1.20
59 138.34 113.89 1.21 277.40 232.36 1.19
G0
61 777.37 605.98 1.28 817.48 635.56 1.29
G2 644.79 502.57 1.28 812.80 640.52 1.27
63 857.82 666.52 1.29 948.18 745.95 1.27
64 823.78 638.93 1.29 1072.78 841.53 1.27
G5 485.41 380.75 1.27 985.32 771.18 1.28
&3] 532.18 410.73 1.30 821.77 645.01 1.27
67 541.69 417.00 1.30 796.08 619.82 1.28
o] 603.46 465.14 1.30 928.52 724.83 1.28
69 1232.92 975.99 1.26 1283.83 1022.86 1.26
70
71
72
73
74 19122 155349 1.23 288 B0 236 61 1.22
75 168.80 137449 1.23 259.25 213.03 1.22
76 181.25 12271 1.23 25608.48 21217 1.21
77 89 66 7344 1.22 17477 14541 1.20
78 72 68 59 60 1.22 138.79 11641 1.20
79 1361.14 1076.47 1.26 1082.06 858.92 1.26
g0

Table 20a. Ratio of average wind power densities of the 6am — 8pm case to the 24-

hours per day case for the CSAA Building.
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CSAA Building 15-hour Vs. 24-hour Day Analysis (6am - 8pm vs. all day) (¢continued)
Existing 15-hour Day | Existing 24-hour Day Cumulative 15-hour Day | Cumulative 24-hour Day
Average Wind Power | Average Wind Power Ratin Average Wind Power Average Wind Power Ratio
Point#|  Density [A¥m®] Density (WimP] | (15-hri24-hr) Density MA#m?] Density [Wm-] (15-hri24-hr)

Average 689.49 544.13 1.25 732.50 578.91 1.25
a1 777.96 601.80 1.29 1160.56 891.14 1.30
B15 799.19 625.56 1.28 780.25 606.58 1.29
a2 125.91 93.78 1.27 382.78 298.06 1.28
33 148.72 118.63 1.24 110.587 9044 1.22
B33 233.44 188.04 1.24 248.21 199.28 1.25
84 174.61 140.36 1.23 184.67 148.22 1.22
a5 33866 27833 1.22 268 .88 22741 1.21
BAS 24231 208.82 1.16 262.31 20913 1.21
ag 5746 45.32 1.24 108.25 g8.749 1.22
a7 367.76 303.80 1.21 593.93 478.29 1.24
B75 2315.57 1810.22 1.28 1803.79 1402.93 1.29
g8 1112.62 858.88 1.30 1254.11 961.81 1.30
101000 835.82 643.28 1.30 1116.95 858.09 1.30
101125 1709.72 1337.83 1.28 1642.16 1287.24 1.28
101250 1819.71 1445.93 1.26 1804.32 1434 .99 1.26
101375 1617.07 1287.78 1.26 1577.25 1258.12 1.25
101500 1561.31 1240.08 1.26 1596.12 1269.46 1.26
102000 10B8.57 A7 37 1.29 11257 B7 B2 1.28
102125 1227.40 957.31 1.28 888.24 699.74 1.27
102250 2314.29 1819.24 1.27 2475.95 1949.52 1.27
102375 2441.52 1934.19 1.26 2375.11 1880.96 1.26
102500 2010.92 1592.64 1.26 1993.10 1581.75 1.26
103000 217.34 174.72 1.21 228.24 182.31 1.24
103125 900.42 730.23 1.23 945.90 763.54 1.24
103250 1630.69 1299.64 1.25 1690.58 1348.34 1.25
103375 2157.28 1701.33 1.27 2163.98 1707 .86 1.27
103500 1979.77 1563.60 1.27 1819.88 1439.59 1.26
104000 7830 52.58 1.24 6233 4907 1.27
104125 2699.04 2129.02 1.27 2419.14 1914.81 1.26
104250 1815.86 1439.33 1.26 1835.69 1455.84 1.26
104375 1650.61 1307.62 1.26 1646.16 1304.70 1.26
104500 1580.67 1253.38 1.26 1877.71 1249.61 1.26
106000 1899.67 1491.92 1.27 1883.66 1489 .42 1.26
105125 3124 .97 2476.31 1.26 2748.45 2181.00 1.26
105250 2206.63 1747.86 1.26 2233.16 1773.70 1.26
106375 1767 .87 1393.85 1.26 1784.05 1414.08 1.26
108500 1705.42 1350.19 1.26 1660.13 1317.68 1.26

Table 20b. Ratio of average wind power densities of the 6am — 8pm case to the 24-
hours per day case for the CSAA Building (continued from Table 20a).

3.1.3 Bank of America Building Results

The “good” wind resource points’ results of the wind-tunnel testing for the Bank
of America Building are shown in Table 21, and the “great” wind resource points’
results are in Table 22.

Average wind power densities were highest near or above the roof level. The
highest average wind power density was 2084.5 Watts per square meter at point 81 for
the existing setting, and 1910.8 Watts per square meter for the cumulative setting for
point 101000. The southwestern face and northern corner of the building are “good”
wind resources due to their high average wind power densities from point 33 to point 36

and point 43 to point 46, respectively, for the existing setting. The southwestern face of

83



the building is a “great” wind resource due to its high average wind power densities
from point 37 to point 37 for the cumulative setting. The point that showed the most
increase due to local development was point 47 which had an increase of 105 percent,
and the point that showed the most decrease was point 63 which had a decrease of 59
percent.

The highest turbulence intensity for the existing setting of a point with “good” or
“great” wind resource was point 86 with 63.7 percent; and point 88 held the highest
value for cumulative setting at 69.6 percent. The average of the measurement locations’
average wind power density for the Bank of America Building was 776.21 Watts per
square meter for the existing setting and 793.95 Watts per square meter for the
cumulative setting, meaning that there could be an overall increase in power production

at this building if the city chooses to develop in this area.
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Table 21. Results for “good” points at the Bank of America Building.
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Table 22. Results for “great” points at the Bank of America Buiding.



Bank of America Building Results with Winds from 6am to 8pm

The reduced, full-scale data for Fox Plaza for winds from 6am to 8pm are
displayed in the same manner as in the previous section. The “good” wind resource
points’” results of the wind-tunnel testing for the Bank of America Building are shown in
Table 23, and the “great” wind resource points’” results are in Table 24. Tables 25a and
25b show the ratio of the average wind speed densities of 6am to 8pm case to the all
hours’ case for each point tested.

The point with the highest average wind power density during the hours of 6am
to 8pm (the 15-hour day case) for the existing setting was point 875 which had a value of
2781.34 Watts per square meter, and the same point held the highest value, 2649.70
Watts per square meter, for the cumulative setting, All points showed an increase in
average wind power density from the 24-hour day case, demonstrating that the winds

are higher during business hours.
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Table 23. Results for “good” points at the Bank of America Building from 6am —

8pm.
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Table 24. Results for “great” points at the Bank of America Building from 6am —

8pm.



Bank of America Building 15-hour Vs. 24-hour Day Analysis (6am - 8pm vs. all day)
Existing 15-hour Day | Existing 24-hour Day Cumulative 15-hour Day | Cumulative 24-hour Day
Average Wind Power | Average Wind Power Ratin Average Wind Power Average Wind Power Ratio
Paoint#| Density [Wm?] Density [¥im?]  |(15-hr/24-hr) Density [VWm?] Density [¥rm?] (15-hri24-hr)
Average 977.51 776.21 1.25 1002.06 793.65 1.25
1
2
3 124.59 104.39 1.19 131.86 109.60 1.20
4 282.74 230.30 1.23 22534 184.83 1.22
5 278.20 22515 1.23 22511 183.96 1.22
5} 268.22 218.44 1.22 213.23 175.15 1.22
7 1134.50 907.03 1.25 1002.38 801.50 1.25
8
9
10
11
12
13
14 153.60 118.64 1.29 141.63 110.29 1.28
15 130.03 100.37 1.30 150.31 117.48 1.28
16 125.02 95,88 1.30 2568.80 202 67 1.28
17 347.89 264.75 1.31 1124.14 872.69 1.29
18
19
20
21
22
23 2729 24 .58 1.1 2136 19.10 1.12
24 2828 24 66 1.15 2585 2291 113
25 34 41 26.86 1.19 3613 31.03 1.16
26 3408 28.38 1.20 42.38 36 67 1.16
27 235.30 198.78 1.18 2301 21432 1.07
28
29
30
3
32
33 645.91 501.65 1.29 712.27 552.62 1.29
34 912.88 712.13 1.28 832.85 650.05 1.28
35 986.45 763.24 1.29 783.37 608.25 1.29
36 871.98 671.92 1.30 775.03 598.50 1.29
a7 1487.76 1172.08 1.27 1378.55 1092.65 1.26
38
39
40
41
47
43 503.12 399.86 1.26 528.15 410.43 1.29
44 328.61 25223 1.30 260.78 202 67 1.29
45 324 .56 248.43 1.31 538.36 413.16 1.30
46 448.88 34127 1.32 729.52 560.22 1.30
47 974.24 748.85 1.30 1946.84 1537 .64 1.27
48
44
a0
a1
52
53 48.18 39.11 1.23 41.31 33.15 1.25
54 3310 2654 1.24 4773 3887 1.24
55 3574 28.85 1.23 3969 3287 1.21
56 3585 2887 1.25 52 81 43.43 1.21
a7 97 96 75.55 1.30 104 .49 8247 1.27
58
59
G0
61
G2
63 679.43 548.77 1.24 271.44 22518 1.21
64 263.65 22285 1.18 180.18 151.87 1.19
G5 247 BB 211.27 117 130.05 111.09 117
&3] 63 62 54 8f 1.16 94 97 8233 1.15
67 363.05 306.93 1.18 28327 247 .97 1.18
o]
69
70
71
72
73 300.21 237.84 1.26 23215 184.69 1.26
74 309 38 244 83 1.26 250 43 20381 1.26
75 261.26 206.73 1.26 194 .62 154.83 1.26
76 173.02 136.17 1.27 138.97 100.92 1.26
77 1095.23 872.80 1.25 1178.88 935.26 1.26
78
79
g0

Table 25a. Ratio of average wind power densities of the 6am —8pm case to the 24-

hours per day case for the Bank of America Building.
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Bank of America Building 15-hour Vs. 24-hour Day Analysis (6am - 8pm vs. all day) (¢continued)
Existing 15-hour Day | Existing 24-hour Day Cumulative 15-hour Day | Cumulative 24-hour Day
Average Wind Power | Average Wind Power Ratin Average Wind Power Average Wind Power Ratio
Point#|  Density [A¥m®] Density [Wim] | (15-hri24-hr) Density MA#m?] Density [Wm-] (15-hri24-hr)

Average 977.51 776.21 1.25 1002.06 793.65 1.25
a1 2631.68 2084.48 1.26 2394.49 1896.57 1.26
B15 1484.63 1164.68 1.27 2328.68 1835.70 1.27
a2 1392.26 1091.60 1.28 2168.58 1703.73 1.27
33 1356.21 1072.79 1.26 1390.35 1096.97 1.27
B33 1302.22 1033.92 1.26 1317.13 1042.40 1.26
84 1358.53 1086.98 1.25 1463.78 1161.60 1.26
a5 1077.98 856.36 1.26 831.09 655.95 1.27
BAS 994.50 803.44 1.24 795.61 633.18 1.26
ag 715.79 586.67 1.22 1272.41 1029.02 1.24
a7 931.13 770.85 1.21 537.28 448.64 1.20
B75 2781.34 2217.62 1.25 2649.70 2103.67 1.26
g8 2330.69 1837.09 1.27 2304.01 1829.83 1.26
101000 2374.38 1882.59 1.26 242119 1910.80 1.27
101125 1886.18 1495.70 1.26 1959.94 1552.20 1.26
101250 1699.53 1348.70 1.26 1780.32 1410.65 1.26
101375 1569.94 1247.79 1.26 1724.97 1365.90 1.26
101500 1584.07 1259.09 1.26 1620.46 1283.46 1.26
102000 1558.01 1231.19 1.27 1881.94 1481.12 1.27
102125 1974.40 1568.48 1.26 1920.63 1521.99 1.26
102250 1998.00 1589.21 1.26 1821.99 1444.28 1.26
102375 1783.36 1415.60 1.26 1601.01 1268.18 1.26
102500 1668.11 1323.18 1.26 1547 .96 1225.71 1.26
103000 1381.87 1105.06 1.25 127453 1011.06 1.26
103125 1631.55 1304.03 1.25 1624.06 1291.25 1.26
103250 1657.10 1321.03 1.25 1736.66 1380.65 1.26
103375 1592.56 1267.36 1.26 1651.81 1309.02 1.26
103500 1598.85 1271.11 1.26 1716.41 1357.60 1.26
104000 1197.93 926.52 1.29 1015.56 785.36 1.29
104125 1795.97 1433.56 1.25 1821.59 1448 47 1.26
104250 1604.18 1277.64 1.26 1576.49 1252.43 1.26
104375 1535.83 1221.15 1.26 1511.70 1200.19 1.26
104500 1534.80 1220.39 1.26 1457 .56 11567.88 1.26
106000 1304.44 1030.17 1.27 1212.07 951.16 1.27
105125 1587.83 1262.39 1.26 1694.87 1339.43 1.27
105250 1590.75 1267.35 1.26 1576.21 1250.13 1.26
106375 1520.16 1209.83 1.26 1670.25 1244.79 1.26
108500 1612.13 1282.24 1.26 1620.34 1283.84 1.26

Table 25b. Ratio of average wind power densities of the 6am —8pm case to the
24-hours per day case for the Bank of America Building (continued from Table
25a).

3.2 Folsom and Main Street Buildings’ Results

3.2.1 Folsom and Main East Results

The “good” wind resource points’ results of the wind-tunnel testing for the
Folsom and Main East building are shown in Table 26, and the “great” wind resource
points’” results are in Table 27.

Average wind power densities were highest near or above the roof level. The
highest average wind power density was 749.7 Watts per square meter at point 105500.

The only “great” wind resource sites are located at or above the rooftop level of the
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building, and the only “good” wind resource site not on or above roof level is point 48

with an average wind power density of 408.9 Watts per square meter.

The highest turbulence intensity for a point with “good” or “great” wind

resource was point 86 with 59.5 percent. The average of the measurement locations’

average wind power density for Folsom and Main East was 235.07 Watts per square

meter.
"Good” Wind Resource Locations - Folsom and Main East
Existing Setting
Average TkWY Vind Estimated
Average Turhine Aerotecture WEC | Maximum Error in Ave.
Height Above |¥¥ind Power(  Annual Energy Annual Energy | Turbulence | Turbulence | Wind Power

Paint Ground Density Production Praduction Intensity | Intensity Density
# [m] [Wyirm] [kW-hriyear] [kMV-hriyear] [%] [%] [%2]
48 106 .68 408 4 4034 .4 22284 54.9 41.2 4 46
82 106.68 4773 443563 2588.0 52.2 468 4 .69
255 106.68 405.0 4064 .5 22477 57.2 53.0 4.80
i) 106.68 486.3 43528 28577 59.5 524 4.79
ara 106.68 406 .4 4043.0 22251 491 418 4.53
101125 11049 4338 42023 2359 K6 350 294 475
101250 114.30 463.0 43220 2501.4 289 26.5 4.74
101375 11811 5402 4564 .5 2764 4 30.3 271 5.19
101500 121.92 6872 4701.3 29339 329 274 B.16
102125 11044 aB1.1 4662.5 28799 48.7 424 B.21
1023745 118.11 G349 48187 J115.4 J34 290 B.16
102500 121.92 G504 4870.0 31821 31.9 272 5.12
103125 110.48 492 6 43827 2581.8 49.2 44 6 4.76
103375 11811 GEG 4 48821 3201.9 331 289 B.14
104125 11044 5264 4549 5 27418 44 5 341 B.16
104250 114.40 8565 4533.0 284545 a4 N B.14
104375 118.11 H87 R 46594 9 2046 3 288 26.3 B.21
104500 121.92 67148 4886.8 3210.8 31.3 272 5.19
105125 116.21 G522 4870.8 J1B85.2 332 286 B.15
105250 120.02 G221 47479 20B0.8 327 278 B.14

Table 26. Results for “good” points at Folsom and Main East.

92



"Great” Wind Resource Locations - Folsom and Main East

Existing Setting

Awverage kWY Wind Estimated

Average Turbine Aerotecture WEC | Maximum Error in Ave.

Height Above | ¥Wind Power|  Annual Energy Annual Energy | Turbulence | Turbulence | Wind Power

Paoint Sround Density Production Production Intensity | Intensity Density

# [m] [Wrn?) [kMV-hrfyear] [kWY-hriyear] [%2] (%] [%6]
102250 114 .30 7227 4975 2 33310 35 .6 31.0 G.19
105250 114 .30 7240 4976 .8 F326.1 365 34 .3 G.21
103500 12147 7141 4989 7 3334 7 318 8.0 G112
105000 112 40 7278 o001 6 33587 2 368 a7 h G.18
105375 12383 7330 a2y 3370 4 34 4 2848 G.15
105500 127 B4 748 7 33 B 3408 4 324 274 B.1H

Table 27. Results for “great” points at Folsom and Main East.

Folsom and Main East Results with Winds from 6am — 8pm

The reduced, full-scale data for Fox Plaza for winds from 6am to 8pm are
displayed in the same manner as in the previous section. The “good” wind resource
points” results of the wind-tunnel testing for the CSAA Building are shown in Table 28,
and the “great” wind resource points” results are in Table 29. Tables 30a and 30b show

the ratio of the average wind speed densities of 6am to 8pm case to the all hours’ case for

each point tested.

The point with the highest average wind power density during the hours of 6am
to 8pm (the 15-hour day case) was point 105500 which had a value of 942.41 Watts per

square meter. All points showed an increase in average wind power density from the 24-

hour day case, demonstrating that the winds are higher during business hours.
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"Good” Wind Resource Locations - Folsom and Main East - 6am - §pm
Existing Setting

Average TkWY Vyind Estimated

Average Turhine Aerotecture WEC | Maximum Errorin Awe.

Height Above |Y¥ind Power  Annual Energy Annual Energy  |Turbulence | Turbulence | Wind Power

Faint Ground Density Praduction Production Intensity | Intensity Density
# [m] [Wfr?] [KW-hrfyear] [kMY-hriyear] [%] [%] [%5]
48 106 .68 8173 29524 1738.7 54.9 41.0 746
82 106.68 G025 3207.0 18926 52.2 467 714
= ike] 106.68 a08.7 2077 .6 1748.1 57.2 53.0 7.26
a6 106 .68 BO7.7 31574 1867.0 599.5 592.3 7.2
874 106.68 5083 2062 4 17434 491 418 727
101125 110.48 54148 3064.8 1828.1 35.0 30.0 715
101250 114.30 7T H 3158.7 1H15.58 288 2B.5 712
101375 118.11 G766 J280.9 21686 30.3 271 715
1021325 110.48 7136 33399 22329 487 424 7.22
102375 118.17 774 523 2351.3 338 29.0 7.14
103125 110.49 G14.3 1762 1888 .6 482 44 B 77
104000 106.68 4121 2810.8 147548 61.3 55.0 7.07
1041258 110.48 GE2.0 32751 2137.2 44 5 4.2 7.14
104250 114.40 J02.7 33244 22058 314 27 718
104375 11811 7421 3356.9 2270.2 288 26.3 7.21
104500 121.92 246.3 2468.5 24B6.6 31.3 27.3 7.18
Table 28. Results for “good” points at the Folsom and Main East building from
6am — 8pm.
"Great” Wind Resource Locations - Folsom and Main East - 6am - 8pm
Existing Setting

Awerage 1M Wind Estimated

Average Turhire Agrotecture WEC | Maximum Error in Ave.

Height Above | ¥¥ind Power|  Annual Energy Annual Energy | Turbulence | Turbulence| ¥Wind Power

Paint Ground Density Praduction Production Intensity | Intensity Density

# [m] [Wrn? [kMV-hrfyear] [kWY-hriyear] [%2] [%] [%]
101500 121.92 7367 3360.5 22632 329 2758 713
102125 110.44 7138 33398 22328 48.7 424 7.2
102250 114.30 H09.3 3517 6 25618 J5 6 311 718
102375 11811 7974 34323 2381.3 33.9 29.0 714
102500 121.92 2172 3462.0 2445 4 31.9 273 7.10
103250 114.30 H09.5 351572 255772 d6.5 34.3 718
103375 11811 8374 J467.8 24762 331 29.0 713
103500 121.92 8084 36272 2566.5 31.8 28.0 7.1
104250 114.30 JO027 3324 4 2205 8 a4 278 718
104375 11811 7421 3356.9 2270.2 28.8 26.3 7.21
104500 121.92 89463 J468.5 2486.6 31.3 273 718
105000 11240 H417.5 35303 25820 198 378 FRN
105125 116.21 81848 J460.5 2441 6 33.2 286 712
105250 120.02 78286 34218 2368.8 327 279 713
105375 123.84 4218 3537 .58 25818 4.4 288 714
105500 127 64 842 4 35493 26196 323 274 715

Table 29. Results for “great” points at the Folsom and Main East building from

6am — 8pm.
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Folsom and Main East
Existing 15-hour Day Existing 24-hour Day
Awerage Wvind Power Average Wind Power Fatio
Paint # Density [Wim?] Density [VWim®] (15-hrf24-hr)
Average 204 82 23507 1.24
1 27.54 27, 1.20
2 38.74 32.38 1.20
El 58.63 58.50 1.21
4 108.70 8a8.88 1.23
5 153.05 124 65 1.23
] 19140 155 85 1.23
7 1689.25 13812 1.23
B 24183 197 .82 1.22
]
10
11
12
13 19.46 1536 1.27
14 27.29 2146 1.27
18 4342 34.07 1.27
16 54.23 4255 1.27
17 48.81 39.28 1.27
14 313.46 240.50 1.30
19
20
1 39.81 33.85 1.18
22 4540 39.85 1.18
23 24 .65 20.74 1.19
24 2543 211 1.20
25 28.58 23.48 1.22
26 36.07 29.63 1.22
27 28.22 23.22 1.22
28 17.11 15.65 1.10
24
30
31 4093 3276 1.25
3z BY.67 5588 1.25
33 107 86 35.80 1.26
34 14228 11282 1.26
35 199 86 15838 1.26
36 27824 21968 1.27
a7 22401 17843 1.26
38 409.81 324 .36 1.26
34
40
41
42
43 2278 18.08 1.26
44 34.48 27.08 1.27
45 a7 8918 1.28
46 12520 97.26 1.29
47 243.82 189.30 1.29
48 517.34 408.91 1.27
48
50
51 3.29 2758 1.20
52 5.73 4.74 1.21
53 14.62 11.73 1.25
54 16.52 13.18 1.25
55 21.77 1748 1.25
56 24.04 19.37 1.24
a7 24.10 1943 1.24
58 G717 31.81 1.30
54
60
= 55.84 5625 1.22
52 104 .80 3544 1.23
63 171.18 13878 1.23
64 180.54 147 16 1.23
a1 169 61 13915 1.22
66 18512 135 84 1.21
g7 75.68 5486 117
ot 24891 20556 1.21
64
70
71 17.34 14.38 1.21
72 34.25 27.86 1.22
73 51.07 41.31 1.24
74 83.35 66 .66 1.25
74 4945 79.83 1.25
76 143.83 11422 1.26
77 11366 90.28 1.26
78 191.58 15403 1.24
74
50

Table 30a. Ratio of average wind power densities of the 6am — 8pm case to the 24-
hours per day case for the Folsom and Main East building.



Folsom and Main East (continued)
Existing 19-hour Day Existing 24-hour Day
Awerage Vvind Power Average Wind Power F atio
Paint # Density [m?] Density [VWim®] (15-hrf24-hr)

Average 204 B2 23507 1.24
81 413.92 331481 1.25
815 411.38 328.23 1.25
8z 602.50 477.34 1.26
a3 219.39 16770 1.31
835 G6.15 51.36 1.29
84 116.78 95.88 1.22
g5 496.51 39927 1.24
855 508.73 405.00 1.26
fela] 607.66 486.33 1.25
a7 464 .93 37272 1.25
875 508.27 406.44 1.25
a8 25382 206.90 1.23
101000 36260 28696 1.26
101125 541.83 433.84 1.25
1012450 577.64 463.02 1.25
101375 676.63 540.18 1.25
101500 735.74 587.25 1.26
102000 23055 17721 1.30
102125 713.57 561.07 1.27
1022450 909.34 72270 1.26
102375 797.38 63493 1.26
102500 817.23 650.44 1.26
103000 219.583 17983 1.22
103125 614.26 492 57 1.25
1032450 909.51 72397 1.26
103375 837.50 666.45 1.26
103500 898.38 71413 1.26
104000 41213 32948 1.25
104125 661.98 525.48 1.26
1042480 70267 556.47 1.26
104375 742.12 587.58 1.26
104500 846.34 671.81 1.26
105000 917.55 727.85 1.26
105124 818.84 652.20 1.26
1052450 78258 622.00 1.26
105375 921.58 73297 1.26
105500 242.41 749.70 1.26

Table 30b. Ratio of average wind power densities of the 6am — 8pm case to the
24-hours per day case for the Folsom and Main East building (continued from
Table 30a).

3.2.2 Folsom and Main West Results

The “good” wind resource points’ results of the wind-tunnel testing for the
Folsom and Main East building are shown in Table 31, and the “great” wind resource
points’ results are in Table 32.

Average wind power densities were highest near or above the roof level. The
highest average wind power density was 755.5 Watts per square meter at point 105125.
The only “great” wind resource sites are located at or above the rooftop level of the

building, and the only “good” wind resource sites not on or above roof level are point 40
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and 49 with average wind power densities of 485.1 and 450.7 Watts per square meter,
respectively.

The highest turbulence intensity for a point with “good” or “great” wind
resource was point 104000 with 76.7percent. The average of the measurement locations’

average wind power density for Folsom and Main West was 232.73 Watts per square

meter.
"Good” Wind Resource Locations - Folsom and Main West
Existing Setting
Average TkYY VWind Estimated
Average Turhine Aerotecture WEC | Maximum Error in Awve.
Height Ahove |Y¥ind Power(  Annual Energy Annual Energy  |Turbulence | Turbulence | Wind Power
Paint Ground Density Praduction Fraduction Intensity | Intensity Density
# [m] [Wyfrm] [Ki-hrfyear] [kM¥-hriyear] [%] [%] [%a]
40 13718 4851 4462 .5 2655 H 44 3 2472 4487
44 12182 4507 4206 .3 24392 50.1 J3.2 4 Bh
101125 12673 425 6 4127 4 23058 da .6 284 4 76
1012580 124.54 4171 4096 .6 22698 269 2a.h 437
1013475 133.45 5160 4477 4 2HTE 2748 241 471
101200 137 .18 731 4646 .1 2880.1 281 242 B.15
1022580 13718 AH5.1 4900.2 3241.0 241 263 B.19
103250 128 .54 h22 4 4716 4 3002 9 50.9 417 H.24
103200 137 .18 G798 4884 .5 32106 a1.0 26 .6 B.17
104000 12954 492 5 4380.3 2611.0 76.7 58.6 4 g
104250 13716 G7H B 4412 5 32434 2a8 24K .12
104375 140.97 G18.5 47663 J039.6 2748 230 B.15
104500 144 78 GE0.7 48652 3181.8 266 23z B.14
105000 1289 54 5518 45104 27587 3 59.8 47 4 4 B5
105250 137 18 G626 4828.0 1752 301 26.0 .15
105375 140 .97 G981 4931 4 J268.48 281 24 4 B.15

Table 31. Results for “good” points at Folsom and Main West.



"Great” Wind Resource Locations - Folsom and Main West
Existing Setting

Average TkWY Wind Estimated

Avarage Turbine Aerotecture WEC | Maximum Error in Ave.

Height Above |¥Wind Power|  Annual Energy Annual Energy | Turbulence | Turbulence | Wind Power

Paint Sround Density Praduction Praoduction Intensity | Intensity Density

# [m] [ [kMY-hrfyear] [kMy-hriyear] [%] [%] [%]
102125 133.35 7355 4974 2 a342 7 a5.0 1.4 g.1a
1023745 140 97 734.0 4987 .9 d35149 285 258 B.17
1025600 144 78 7042 48200 J263 A 264 234 G189
103375 133.35 7006 49206 32538 9.3 321 g.18
104125 133.35 7387 0214 23723 324 273 g.13
105125 13335 7555 a036.1 3416 8 314 0.3 A.13
105500 144 78 73248 485G 9 3356 1 267 24 4 G 16

Table 32. Results for “great” points at Folsom and Main West.

Folsom and Main West Results with Winds from 6am — 8pm

The reduced, full-scale data for Fox Plaza for winds from 6am to 8pm are
displayed in the same manner as in the previous section. The “good” wind resource
points’ results of the wind-tunnel testing for the CSAA Building are shown in Table 33,
and the “great” wind resource points” results are in Table 34. Tables 35a and 35b show
the ratio of the average wind speed densities of 6am to 8pm case to the all hours’ case for
each point tested.

The point with the highest average wind power density during the hours of 6am
to 8pm (the 15-hour day case) was point 105125 which had a value of 946.55 Watts per
square meter. All points showed an increase in average wind power density from the 24-

hour day case, demonstrating that the winds are higher during business hours.
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"Good” Wind Resource Locations - Folsom and Main West - 6am - 8pm
Existing Setting
Average TkWY VWind Estimated
Average Turhine Aerotecture WEC | Maximum Errorin Awe.
Height Above |Y¥ind Power  Annual Energy Annual Energy  |Turbulence | Turbulence | Wind Power
Faint Ground Density Praduction Production Intensity | Intensity Density
# [m] [Wyfrm?] [kW-hrfyear] [kMY-hriyear] [%] [%] [%a]
40 137.16 G082 32253 2024 6 44 3 2893 7.01
49 121.92 567 8 3063.5 1862.1 50.1 33.2 7.35
1011325 125.73 5227 3017 .4 17914 336 294 7.06
101250 129.54 5149 29880 17664 264 2348 711
101375 133.35 643 6 3231.0 20723 274 241 712
102000 129.584 408.2 28429 1494 6 49.9 46.2 7.06
103125 12573 405 5 2640 6 14236 60.1 91.3 718
104000 129.54 G152 J1B3.6 20139 76.7 58.3 7.1
105000 129.54 G914 3244 6 2132.5 59.8 4749 7.30
Table 33. Results for “good” points at the Folsom and Main West building from
6am — 8pm.
"Great” Wind Resource Locations - Felsom and Main West - 6am - 8pm
Existing Setting
Average kWY Wind Estimated
Average Turbine Aerotecture WEC | Maximum Error in Ave,
Height Above | ¥Wind Power|  Annual Energy Annual Energy | Turbulence | Turbulence | Wind Power
Paint Sround Diensity Froduction Froduction Intensity | Intensity Density
# [m] [Wrn?) [kMV-hrfyear] [kWY-hriyear] [%2] [%] [%]
101500 137.16 7171 3330.0 222345 281 242 713
102125 133.35 92148 35158 2568 4 35.0 314 FAK
102250 137.18 a71.2 34753 24438 29.1 26.3 [AK
102375 140.97 89211 35236 25763 285 256 716
102500 144.78 ge22 34858 25103 26.4 235 FAK
103250 129.54 7734 33685 23005 50.9 41.7 718
103375 133.35 4748 3485 4 250249 39.3 321 714
103500 13718 8504 4671 2486.6 31.0 26.6 714
104125 133.35 9228 38417 285819 324 273 7.09
104250 13716 a51.1 3485 1 2480 7 2848 248 7.04
104375 140.97 773 34036 2336.5 278 235 7.1
104500 144,78 8281 34586 2454 .2 256 23.2 712
105125 133.35 946 .6 35520 2625 1 314 0.3 FR
105250 137.18 g28.2 3454 .2 2446.8 30.1 26.0 712
105375 140.97 ara’r 3484 .1 25158 281 24.5 714
105500 144 78 49200 J528 4 25800 26.7 24 .4 715

Table 34. Results for “great” points at the Folsom and Main West building from

6am — 8pm.
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Folsom and Main West
Existing 15-hour Day Existing 24-hour Day
Awerage Wvind Power Average Wind Power Fatio
Paint # Density [Wim?] Density [VWim®] (15-hrf24-hr)
Average PEERES] 23273 1.23
1
2
El 84.21 53.83 1.21
4 102.11 83.86 1.22
5 13017 10582 1.23
] 148.28 11948 1.24
7 182404 12378 1.24
B 18323 12377 1.24
] 259.25 21271 1.22
10
11
12
13 21.88 1778 1.23
14 31.06 25.08 1.24
18 41.21 3288 1.25
16 §2.07 48.94 1.27
17 51.50 48.28 1.27
14 70.54 54.82 1.29
19 7756 59.83 1.30
20 306.33 23508 1.30
1
22
23 13.10 11.30 1.16
24 1572 1345 147
25 17.82 1522 147
26 23.74 19.94 1.19
27 26.88 21.86 1.20
28 18.01 15.16 1.19
24 107.51 91.57 147
30
31
3z
33 84 52 §3.55 1.23
34 11516 393.0 1.24
35 153 61 12308 1.25
36 192.55 152 95 1.26
a7 24475 192 61 1.27
38 199.81 156,71 1.28
34 251.34 197 68 1.27
40 608.20 485.06 1.25
41
42
43 12936 10531 1.23
44 17346 14034 1.24
45 23865 190 43 1.25
46 33213 26231 1.27
47 342.28 2649.98 1.27
48 376.90 297 1.27
48 567.84 450.74 1.26
50
51
52
53 26.66 22.38 1.19
54 32.38 28.98 1.20
55 31.14 2618 1.19
56 39.13 32.27 1.21
a7 29.51 24.80 1.20
58 32.58 28.82 1.21
54 5341 44 .78 1.19
60
=
52
63 18532 13583 1.22
64 232270 182.09 1.22
a1 15233 126 55 1.20
66 122.33 10293 1.19
g7 314.41 254 B 1.23
ot 55.60 4368 1.22
64 95.33 g3.93 1.18
70
71
72
73 5142 42.93 1.20
74 59.18 49.18 1.20
74 51.86 7541 1.22
76 108.64 83.58 1.23
77 13165 106 81 1.23
78 11286 392.05 1.23
gg 168945 13828 1.23

Table 35a. Ratio of average wind power densities of the 6am — 8pm case to the 24-
hours per day case for the Folsom and Main West building.

100



Folsom and Main West (¢ontinued)
Existing 15-hour Day Existing 24-hour Day
Average VWind Power Average Wind Power Ratin
Point # Density [Wv/m?] Density [¥/im?] (15-hri24-hr)

Average 288098 23273 1.23
a1 398 .41 32297 1.23
815 474.90 37789 1.26
a2 109.22 8846 1.23
33 13.30 11.78 113
833 49.98 42 .68 117
84 71.44 6142 1.16
a5 107.87 EERLE] 1.21
8565 76.46 B5.21 117
ag 19.11 16.69 1.15
a7 156 .64 131.19 1.19
875 110.53 91.60 1.21
g8 108.93 90.12 1.22
101000 190.55 154.94 1.23
101125 522.65 425.60 1.23
101250 514.88 417.08 1.23
101375 643.60 516.04 1.25
101500 717.10 573.05 1.25
102000 408.19 318 86 1.28
102125 921.82 735.49 1.25
102250 871.19 695.07 1.25
102375 921.07 734.01 1.25
102500 882.25 704.20 1.25
103000 G0.05 52.07 1.15
103125 406.53 334 B3 1.21
103250 773.39 622.45 1.24
103375 874.77 700.59 1.25
103500 850.53 679.77 1.25
104000 615.23 492.45 1.25
104125 922.81 738.66 1.25
104250 851.07 679.83 1.25
104375 773.09 618.47 1.25
104500 828.15 660.70 1.25
1056000 691.42 551.84 1.25
105125 946.55 755.47 1.25
105250 828.19 662.56 1.25
106375 875.71 698.11 1.25
108500 919.97 732.91 1.26

Table 35b. Ratio of average wind power densities of the 6am —8pm case to the
24-hours per day case for the Folsom and Main West building (continued from
Table 35a).

3.3 Results in Graphical Form

The following sections present the data, shown in the preceding tables in
graphical form. Photos taken of the actual models and local areas used in the wind-
tunnel tests are overlaid with color-coded points showing where “great”, “good” and
“poor", corresponding to the colors used by the preceding tables: a yellow dot with red
text and outline is considered a “great” location, a green dot with black text and outline
is considered a “good” location, and a white dot with black text and outline is

considered a “poor” location. The numbers shown within the dot corresponds to that
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point number of that measurement location, which also corresponds to the point
numbers in the preceding tables.

It is important to note that the point placements are approximate and are not
necessarily to scale. Placements of points on the photos were slightly shifted for some
points to give a better view of other points and are therefore presented as a qualitative
analysis. A more detailed and precise description of the point locations shown in this

section is given in Tables 1 through 5.

3.3.1 Fox Plaza Graphical Results

The results from Tables 15a and 15b are shown in Figures 22 through 25 in
graphical form for the Fox Plaza Building. Figure 22 shows the results for the existing
setting and Figure 23 shows the results for the cumulative setting, both figures assume
the WECs run continuously all day and night; Figure 24 shows graphical results for the
existing setting and Figure 25 shows the results for the cumulative setting, and both of
these figures assume the WECs run only from 6am to 8pm.

Fox Plaza has a unique architectural feature that includes a slender protruding
structure on the north and south faces and the roof, which may aid in flow acceleration,
if other surrounding structures do not block the wind. Figures 22 through 25 illustrate
how this feature may lead to higher annual average wind power density values on the
north or south face, or near the corners of the building.

Figure 22 illustrates that the best locations to place a WEC is above the roof level

and on the north face of the building. Since most of the winds come from the northwest,
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that would place the CSAA building somewhat upwind for many of the wind directions
tested, probably creating a region of accelerated flow on the north face of this building.
The south face of the building would not be a good place to locate WECs due to
its low annual average wind power density values, potentially due to the same reason
the north face sees such good potential: the wind has probably been redirected from the
south face of the building to go around the north face. Several other areas of the building
see local flow accelerations which yield higher values, such as the upper southwest

corner.
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Figure 22. Graphical results for Fox Plaza WECs run'h'ig 24-hours er day for the
existing setting.

Figure 23 illustrates how the annual average wind power densities change from
the existing to the cumulative settings. The values have actually dropped slightly due to
the area’s development. There is a building upwind at One Polk, located directly
between the CSAA building and Fox Plaza, and an addition to Fox Plaza that may be
blocking some of the wind from accelerating around the building. A large development

on 10th Street and Market Street is also located next to Fox Plaza, and while it looks like
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it should create a wind-tunnel effect down Market Street, it also appears to be disturbing

the flow in a manner restricting flow acceleration near the surface of Fox Plaza.
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Figure 24 is similar to Figure 22 except the data is analyzed using only wind data

from 6AM to 8PM. Since higher winds typically occur during this time of the day, the

values are slightly elevated above those in Figure 22, but the trends are the same. The

same is true for Figure 25, which is the cumulative setting analyzed for the same 15-hour
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day, which is the cumulative setting analyzed for the same 15-hour day has trends

similar to Figure 23.
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Figure 24. Graphical results for Fox Plaza WECs running 15-hours per day for the
existing setting.
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Figure 25. Graphical results for Fox Plaza WECs runnin
cumulative setting.

15-hours per day for the

«

3.3.2 CSAA Building Graphical Results

The results from Tables 20a and 20b are shown in Figures 26 through 29 in
graphical form for the CSAA Building. Figure 26 shows the results for the existing
setting and Figure 27 shows the results for the cumulative setting, both figures assume

the WECs run continuously all day and night; Figure 28 shows graphical results for the



existing setting and Figure 29 shows the results for the cumulative setting, and both of
these figures assume the WECs run only from 6AM to 8PM.

The CSAA building has a penthouse feature on the roof that elevates point 105
above the rest of the points, and since there are few upwind structures on the same
order of magnitude with respect to height for the most frequently occurring winds in
San Francisco, point 105 shows some of the highest annual average wind power
densities. This feature also may cause local flow accelerations for other rooftop locations.

Figure 26 illustrates that the best locations for WECs is in fact the rooftop level or
above. The northeast and southwest corners are also suitable locations to place WECs.
The northeast corner might be seeing local flow acceleration due to wind accelerating
over the smaller structure attached to the CSAA building. The southwest corner is
relatively unobstructed from tall upwind structures for the most frequently occurring

winds.
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Figure 26. Graphical results CSAA WECs running 24-hours per day for the existing
setting.

Figure 27 shows how the annual average wind power densities change due to
potential local developments in the area. Overall, the potential developments will cause
an increase in the available wind power, with higher annual average wind power
densities on the southwest corner of the building and several rooftop locations. While
the only upwind development is a small building located across the corner of the

intersection at 77 Van Ness, it appears that this structure and the building located at One

Polk, as well as other downwind developments, cause more favorable wind conditions
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at this building’s location, even though these same developments caused less favorable

conditions at Fox Plaza.
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Figure 27. Graphical results for CSAA WECs running 24-hours per day for the
cumulative setting.

Figure 28 is similar to Figure 26 except the data is analyzed using only wind data
from 6AM to 8PM. Since higher winds typically occur during this time of the day, the

values are slightly elevated above those in Figure 26, but the trends are the same. The
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same is true for Figure 29, which is the cumulative setting analyzed for the same 15-hour

day has trends similar to Figure 27.
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Figure28. Grahical result for CSAA WECs runnin 15-hours per day for the
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Figure 29. Graphical results for CSAA WECs runng 15-hours per day for the
cumulative setting.

3.3.3 Bank of America Building Graphical Results

The results from the Tables 25a and 25b are shown in Figures 30 through 33 in
graphical form for the Bank of America Building. Figure 30 shows the results for the
existing setting and Figure 31 shows the results for the cumulative setting, both figures

assume the WECs run continuously all day and night; Figure 32 shows graphical results
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for the existing setting and Figure 33 shows the results for the cumulative setting, and
both of these figures assume the WECs run only from 6AM to 8PM.

The Bank of America Building has the unique architecture of having a shorter
but thicker octagonal tower with a relatively smooth rooftop on top of a large boxy base.
Figure 30 illustrates that the best WEC locations are on or above the rooftop level. Unlike
the other buildings studied, however, the other “great” location to place WECs is on the
southwest face, a wide, flat faces of the building, where Fox Plaza and the CSAA
building have shown that the best locations are either the corners or the slim protruding
faces which are quite like corners themselves. While there was no study into the
direction of the wind over these buildings, it is possible that the flow is accelerating up
and over the building on this face instead of stagnating and wrapping around the

corners of this side of the building.
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Figure 30. Graphical results Bank of America WECs running 24-hours per day for
the existing setting.

Figure 31 shows how the local development changes the wind conditions on the
Bank of America building. The flow over the southwest face is decreased, possibly due
to the 10th and Market building development located just a few feet away from the Bank
of America Building. The winds over the top of the building are increased, however, as

well as on the north corner of the building.
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Figur 31. Graphical results for Bank of America WECs running 24-hours per day
for the cumulative setting.
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Figure 32 is similar to Figure 30 except the data is analyzed using only wind data

from 6AM to 8PM. Since higher winds typically occur during this time of the day, the

values are slightly elevated above those in Figure 30, but the trends are the same. The

same is true for Figure 33, which is the cumulative setting analyzed for the same 15-hour

day has trends similar to Figure 31.
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Figure 32. Graphical results for Bank of America WECs running 15-hours per day

for the existing setting.
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Figur 33. Graphical results for Bank of America WECs running 15-hoursper day
for the cumulative setting.

3.3.4 Folsom and Main East Building Graphical Results

The results from Tables 30a and 30b are shown in Figures 34 and 35 in graphical
form for the Folsom and Main East Building. Figure 34 shows the results for the existing
setting assuming the WECs run continuously all day and night; Figure 35 shows

graphical results for the existing setting and assumes the WECs run only from 6AM to

8PM.
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Figure 34 illustrates that the best places to locate WECs is above the roof level.
While this building has a penthouse structure on the small roof, it does not appear to
provide a significant flow acceleration over the roof since there are very few “great”
annual average wind power density values. Since this area of San Francisco has a less
dense skyline (or fewer tall buildings) and is close to the bay, the result appears to be a
lack of flow acceleration effects. It is also possible that the few tall buildings that are in
the vicinity are so scattered that instead of creating wind accelerations down streets and

corridors, they break up and take energy out of the wind.
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Figure 35 is the similar to Figure 34 except the data is analyzed using only wind

data from 6AM to 8PM. Since higher winds typically occur during this time of the day,

the values are slightly elevated above those in Figure 34, but the trends are the same.
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3.3.5 Folsom and Main West Building Graphical Results

The results from Tables 35a and 35b are shown in Figures 36 and 37 in graphical
form for the Folsom and Main West Building. Figure 36 shows the results for the

existing setting assuming the WECs run continuously all day and night; Figure 37 shows
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graphical results for the existing setting and assumes the WECs run only from 6AM to
8PM.

Figure 36 shows that there are not many “great” locations to place a WEC on this
building. The only “great” locations are above the roof level. As stated previously, this
area of San Francisco has a less dense skyline (or fewer tall buildings) and is close to the
bay, most likely resulting in fewer local fields of flow accelerations. It is also possible
that the few tall buildings that are in the vicinity are so scattered that instead of creating
wind accelerations down streets and corridors, they break up and take energy out of the

wind.
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Figure 36. Graphical results Folsom and Main West WECs running 24-hours per
day for the existing setting.

Figure 37 is the same as Figure 36 except the data is analyzed using only wind
data from 6AM to 8PM. Since higher winds typically occur during this time of the day,

the values are slightly elevated above those in Figure 36, but the trends are the same.
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Figure 37. Graphical results for Folsom and Main West WECs running 15-hours
per day for the existing setting.

4.0 Conclusions and Recommendations
It was shown through wind-tunnel testing that the highest average wind power
densities typically occur at or above the roof level of buildings in an urban environment.
In some cases, speed-up is evident over the roof of a building, where the maximum

wind speed is greatest closer to the roof than the higher measurement locations, within
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the measured space above roof level. Sites located near 10th Street and Market Street
averaged much higher average wind power densities than the sites located near Folsom
Street and Main Street, which are near the Bay, demonstrating site-specific wind
characteristics.

One potential advantage of using urban WECs is that they could be designed to
run in a turbulent environment without the major losses in efficiency and safety that a
traditional WEC, such as a horizontal axis wind turbine, may suffer in such an
environment. Knowledge of wind characteristics in an urban environment is necessary
to be able to design an effective WEC for urban use. Wind-tunnel testing is an effective
way to gather information on the characteristics of wind in an urban environment.

Furthermore, it is unclear how the criteria for “great”, “good” and “poor” annual
average wind power densities given by Manwell (2003) were determined, though it is
assumed these qualitative evaluations are based on the analysis of a typical horizontal or
vertical axis wind turbine since most of the work presented in the source regards these
types of wind turbines. It may be the case that these criteria are based on some cost-
benefit analyses which may be applicable to only horizontal or vertical axis wind
turbines, making further assessment of future WECs necessary. The results presented
would still be valid in this case since the qualitative analysis has no bearing on the actual
data reduction and the trends would still be the same given different criteria.

Wind-tunnel testing can be used to acquire wind information based to various
wind directions and changes in the cityscape (which may affect near-surface wind

characteristics of a building where WECs are located), and can simulate annual wind
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conditions relatively simply and quickly. Wind-tunnel testing was found to be an
effective means for determining wind characteristics over the near surface of buildings
in an urban environment. While a few general trends were found, it was also shown that
each building had its own wind characteristics, leading to the conclusion that testing of
specific sites should be recommended if it is desired to incorporate WECs into a

building’s design.

4.1 Recommendations

In order to gain a more general understanding of wind over the surface of a
building in an urban environment, it is recommended that more buildings be wind-
tunnel tested to get a better sampling of possible wind conditions. With enough
information, it may be possible to find ways to better generalize the wind characteristics
of certain types of cityscapes and building configurations. Other urban areas, besides
San Francisco, may also be studied in the wind tunnel to further expand knowledge of
wind patterns in an urban environment.

The variation of wind characteristics in different locations in the city of San
Francisco leads to the recommendation that developers interested in incorporating
WECs into a building’s design should perform a wind power analysis, such as the ones
conducted in this study, on the specific building being developed.

Urban environments have the potential to provide a suitable wind energy

resource, provided that turbulence effects, if proven to be a problem with current of
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future designed WECsS, can be mitigated. A closer look into how turbulence can affect
urban WECs is advised.

One way to improve the data obtained from wind-tunnel testing in the future is
to implement the use of a three-dimensional probe. The current setup employed a single
hotwire which only captures components of the wind in a plane perpendicular to the
wire. Wind-tunnel testing with a three-dimensional probe takes a serious investment in
time and money due to the complexity of calibrating and operating the probe. It is
recommended that a cost-benefit analysis be performed before testing with a three-
dimensional probe is more seriously considered. Testing may also be conducted
utilizing tufts to gain a qualitative understanding of the general direction of the flow
over the near surfaces of buildings in urban environments, since many WECs are highly

dependent on the direction of the wind.
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6.0 APPENDIX A: THE ATMOSPHERIC BOUNDARY LAYER
WIND TUNNEL AT UNIVERSITY OF CALIFORNIA, DAVIS

In the present investigation, the Atmospheric Boundary Layer Wind Tunnel
(ABLWT) located at University of California, Davis was used (Figure A-1). Built in 1979
the wind tunnel was originally designed to simulate turbulent boundary layers
comparable to wind flow near the surface of the earth. In order to achieve this effect, the
tunnel requires a long flow-development section such that a mature boundary-layer
flow is produced at the test section. The wind tunnel is an open-return type with an
overall length of 21.3 m and is composed of five sections: the entrance, the flow-
development section, the test section, the diffuser section, and the fan and motor.

The entrance section is elliptical in shape with a smooth contraction area that
minimizes the free-stream turbulence of the incoming flow. Following the contraction
area is a commercially available air filter that reduces large-scale pressure fluctuations of
the flow and filters larger-size particles out of the incoming flow. Behind the filter, a
honeycomb flow straightener is used to reduce large-scale turbulence.

The flow development section is 12.2 m long with an adjustable ceiling for
longitudinal pressure-gradient control. For the present study, the ceiling was diverged
ceiling so that a zero-pressure-gradient condition is formed in the stream wise direction.
At the leading edge of the section immediately following the honeycomb flow
straightener, four triangularly shaped spires are stationed on the wind tunnel floor to

provide favorable turbulent characteristics in the boundary-layer flow. Roughness
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elements are then placed all over the floor of this section to artificially thicken the
boundary layer. For a free-stream wind speed of 4.0 m/s, the wind tunnel boundary
layer grows to a height of one meter at the test section. With a thick boundary layer,
larger models could be tested and thus measurements could be made at higher
resolution.

Dimensions of the test section are 2.44 m in stream wise length, 1.66 m high, and
1.18 m wide. Similar to the flow-development section, the test section ceiling can also be
adjusted to obtain the desired stream wise pressure gradient. Experiments can be
observed from both sides of the test section through framed Plexiglas windows. One of
the windows is also a sliding door that allows access into the test section. When closed
twelve clamps distributed over the top and lower edges are used to seal the door. Inside
the test section, a three-dimensional probe-positioning system is installed at the ceiling
to provide fast and accurate sensor placement. The traversing system scissor-type
extensions, which provide vertical probe motion, are also made of aerodynamically
shaped struts to minimize flow disturbances.

The diffuser section is 2.37 m long and has an expansion area that provides a
continuous transition from the rectangular cross-section of the test section to the circular
cross-sectional area of the fan. To eliminate upstream swirl effects from the fan and
avoid flow separation in the diffuser section, fiberboard and honeycomb flow

straighteners are placed between the fan and diffuser sections.
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The fan consists of eight constant-pitch blades 1.83 m in diameter and is powered
by a 56 kW (75 hp) variable-speed DC motor. A dual belt and pulley drive system is

used to couple the motor and the fan.
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Figure A-1. Schematic diagram of the UC Davis Atmospheric Boundary Layer
Wind Tunnel.



7.0 APPENDIX B: INSTRUMENTATION AND MEASUREMENT
SYSTEMS

Wind tunnel measurements of the mean velocity and turbulence characteristics
were performed using hot-wire anemometry. A standard Thermo Systems Inc. (TSI)
single hot-wire sensor model 1210-60 was used to measure the wind quantities. The
sensor was installed at the end of a TSI model 1150 50-cm probe support, which was
secured onto the support plate of the three-dimensional sensor positioning system in the
U.C. Davis Atmospheric Boundary Layer Wind Tunnel (ABLWT) test section. A 10-m
shielded tri-axial cable was then used to connect the probe support and sensor
arrangement to a TSI model IFA 100 constant temperature thermal-anemometry unit
with signal conditioner.

Hot-wire sensor calibrations were conducted in the ABLWT test section over the
range of common velocities measured in the wind tunnel boundary layer. Signal-
conditioned voltage readings of the hot-wire sensor were then matched against the
velocity measurements from a Pitot-static tube connected to a Meriam model 34FB2 oil
micro-manometer, which had a resolution of 25.4 um of oil level. The specific gravity of
the oil was 0.934. The Pitot-static tube was secured to an aerodynamically shaped stand
and was positioned so that its flow-sensing tip is normal to the flow and situated near
the volumetric center of the test section. Normal to the flow, the end of the hot-wire

sensor was then traversed to a position 10 cm next to the tip of the Pitot-static tube.
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Raw voltage data sets of hot-wire velocity measurements were digitally collected
using a LabVIEW data acquisition system, which was installed in a personal computer
with a Pentium 166Mhz processor. Hot wire voltages were obtained from the signal
conditioner output of the IFA 100 anemometer. The output was connected to a multi-
channel daughter board linked to a United Electronics Inc. (UEI) analog-to-digital (A/D)
data acquisition board, which is installed in one of the ISA motherboard slots of the PC.
LabVIEW software was used to develop virtual instruments (VI) that would initiate and
configure the A/D board, then collect the voltage data given by the measurement
equipment, display appropriately converted results on the computer screen, and finally
save the raw voltage data into a designated filename.

For the hot-wire acquisition, the converted velocity data and its histogram is
displayed along with the mean voltages, mean velocity, root-mean-square velocity, and
turbulence intensity, and data acquisition included 30,000 samples that were collected at
a sampling rate of 1000 Hz. This acquisition setting greatly satisfies the Nyquist

sampling theorem such that the average tunnel turbulence signal was 300 Hz.
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8.0 APPENDIX C: WIND TUNNEL ATMOSPHERIC FLOW
SIMILARITY PARAMETERS

Wind tunnel models of a particular test site are typically several orders of
magnitude smaller than the full-scale size. In order to appropriately simulate
atmospheric winds in the U.C. Davis Atmospheric Boundary Layer Wind Tunnel
(ABLWT), certain flow parameters must be satisfied between a model and its
corresponding full-scale equivalent. Similitude parameters can be obtained by non-
dimensionalizing the equations of motion, which build the starting point for the
similarity analysis. Fluid motion can be described by the following time-averaged

equations.

Conservation of mass:

%20 and @ﬁLM:O (C-1)
ot, 0X;
Conservation of momentum:
U. U. _ SP ST U, d(-uu
U, +u A, +2¢, Q.U :—i@—g—TgSi3 +V, oy, + (Cuu) (C-2)
a ook MUY oo T, x, = X

Conservation of energy:

J— —_ - __ N
3T 5 am{ K, ] 08T o(-bu) ¢ (C3)

LOX; | poc,, |OX,0X, ox, PoCp,
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Here, the mean quantities are represented by capital letters while the fluctuating
values by small letters. 3P is the deviation of pressure in a neutral atmosphere. poand To
are the density and temperature of a neutral atmosphere and vo is the kinematic

viscosity. In the equation for the conservation of energy, ¢ is the dissipation function,

8T is the deviation of temperature from the temperature of a neutral atmosphere, kois

the thermal diffusivity, and ¢, is the heat capacity.

Applying the Boussinesq density approximation, application of the equations is
then restricted to fluid flows where 8T << T,. Defining the following non-dimensional

quantities and then substituting into the above equations.

T U/ . 1_17 . r_V . (_tU/_ /_Q/ __'__P/ .
U="i su="1 ;xi="1, ;t'="0 Q. ="17 ;08P = ;
' Uo ' Uo Lo Lo ! 0 poUﬁ

P _ (C-4)
S_T = y ; ' = y ; o = y
oT, 8 &o ® P
The equations of motion can be presented in the following dimensionless forms.
Continuity Equation:
O _ g ang P4 90 _ (C-5)

ok ot 0x!

1
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Momentum Equation:

_ri B _ri B o - 2_i/ Py

ou +U] v +i8iij QY :—@+%8T 83i+L 0 'U ~+ (Tup) (C-6)
ot' ox'  Ro ox! Fr Re 0x0x] X/

Turbulent Energy Equation:
ST a8T _ 1 T o(ow) 1

88, +U! 88, =Pr— 8'8 , +8( e,u1)+—~Ec-(p’ (C-7)
ot OX; Re 0x,0x OX! Re

Although the continuity equation gives no similarity parameters, coefficients

from both other equations do provide the following desired similarity parameters.

Rossby number: R = Yo LO
050

Densimetric Froude number: Fr = y 12
(gL OSTO / TO)

Prandtl number: Pr= pocpﬂv%
0

U
Eckert number: Ec= ¢
¢, 0T,

Reynolds number: Re = UOL%
0

In the dimensionless momentum equation, the Rossby number is extracted from
the denominator of the third term on the left hand side. The Rossby number represents

the ratio of advective acceleration to Coriolis acceleration due to the rotation of the earth.
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If the Rossby number is large, Coriolis accelerations are small. Since UC Davis ABLWT
is not rotating, the Rossby number is infinite allowing the corresponding term in the
dimensionless momentum equation to approach zero. In nature, however, the rotation
of the earth influences the upper layers of the atmosphere; thus, the Rossby number is
small and becomes important to match, and the corresponding term in the momentum
equation is sustained.

Most modelers have assumed the Rossby number to be large, thus, neglecting the
respective term in the equations of motion and ignoring the Rossby number as a
criterion for modeling. Snyder (1981) showed that the characteristic length scale, Lo, must
be smaller than 5 km in order to simulate diffusion under neutral or stable conditions in
relatively flat terrain. Other researchers discovered similar findings. Since UC Davis
ABLWT produces a boundary layer with a height of about one meter, the surface layer
vertically extends 10 to 15 cm above the ground. In this region the velocity spectrum
would be accurately modeled. The Rossby number can then be ignored in this region.
Since testing is limited to the lower 10% to 15% of the boundary layer, the length in
longitudinal direction, which can be modeled, has to be no more than a few kilometers.

Derived from the denominator of the second term on the right hand side of the
dimensionless momentum equation, the square of the Froude number represents the
ratio of inertial forces to buoyancy forces. High values of the Froude number infer that
the inertial forces are dominant. For values equal or less than unity, thermal effects
become important. Since the conditions inside the UC Davis ABLWT are inherently

isothermal, the wind tunnel generates a neutrally stable boundary layer; hence, the
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Froude number is infinitely large allowing the respective term in the momentum
equation to approach zero.

The third parameter is the Prandtl number, which is automatically matched
between the wind tunnel flow and full-scale winds if the same fluid is been used. The
Eckert number criterion is important only in compressible flow, which is not of interest
for a low-speed wind tunnel.

Reynolds number represents the ratio of inertial to viscous forces. The reduced
scale of a wind tunnel model results in a Reynolds number several orders of magnitude
smaller than in full-scale. Thus, viscous forces are more dominant in the model than in
nature. No atmospheric flow could be modeled, if strict adherence to the Reynolds
number criterion was required. However, several arguments have been made to justify
the use of a smaller Reynolds number in a model. These arguments include laminar flow
analogy, Reynolds number independence, and dissipation scaling. With the absence of
thermal and Coriolis effects, several test results have shown that the scaled model flow
will be dynamically similar to the full-scale case if a critical Reynolds number is larger
than a minimum independence value. The gross structure of turbulence is similar over a

wide range of Reynolds numbers. Nearly all modelers use this approach today.
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9.0 APPENDIX D: WIND TUNNEL ATMOSPHERIC BOUNDARY-
LAYER SIMILARITY

Wind tunnel simulation of the atmospheric boundary layer under neutrally
stable conditions must also meet non-dimensional boundary-layer similarity parameters
between the scaled-model flow and its full-scale counterpart. The most important
conditions are:

e The normalized mean velocity, turbulence intensity, and turbulent energy
profiles.

e The roughness Reynolds number, Re, =z,u./v.

e Jensen’s length-scale criterion of zo/H.
e The ratio of H/d for H greater than H/3 > 0.2.
In the turbulent core of a neutrally stable atmospheric boundary layer, the
relationship between the local flow velocity, U, versus its corresponding height, H, may

be represented by the following velocity-profile equation.

i = (ij (D-1)

Here, U, is the mean velocity of the inviscid flow above the boundary layer, § is
the height of the boundary layer, and a is the power-law exponent, which represents the

upwind surface conditions. Wind tunnel flow can be shaped such that the exponent o
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will closely match its corresponding full-scale value, which can be determined from field
measurements of the local winds. The required power-law exponent, o, can then be
obtained by choosing the appropriate type and distribution of roughness elements over
the wind tunnel flow-development section.

Full-scale wind data suggest that the atmospheric wind profile at the sites
analyzed in San Francisco yields a nominal value of a = 0.3. This condition was closely
matched in the UC Davis Atmospheric Boundary Layer Wind Tunnel by systematically
arranging an pattern of 2” x 4” wooden blocks of 12” in length along the entire surface of
the flow-development section. The pattern generally consisted of alternating sets of four
and five blocks in one row. A typical velocity profile is presented in Figure D-1, where
the simulated power-law exponent is a. = 0.33.

In the lower 20% of the boundary layer height, the flow is then governed by a

rough-wall or “law-of-the-wall” logarithmic velocity profile.
Y. lln(ij (D-2)

Here, u, is the surface friction velocity, k is von Karman’s constant, and z. is the
roughness height. This region of the atmospheric boundary layer is relatively unaffected
by the Coriolis force, the only region that can be modeled accurately by the wind tunnel

(i.e., the lowest 100 m of the atmospheric boundary layer under neutral stability
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conditions). Thus, it is desirable to have the scaled-model buildings and its
surroundings contained within this layer.

The geometric scale of the model should be determined by the size of the wind
tunnel, the roughness height, zo, and the power-law index, a. With a boundary-layer
height of 1 m in the test section, the surface layer would be 0.2 m deep for the U.C. Davis
ABLWT. For the current study, this boundary layer corresponds to a full-scale height of
the order of 800 m (0.2mWT=120mFS?). Fortunately, due to the tall buildings’
obstruction of the Ekman spiral, it is possible to obtain good data for a measurement
height above 20 centimeters.

Due to scaling effects, full-scale agreement of simulated boundary-layer profiles
can only be attained in wind tunnels with long flow-development sections. For full-scale
matching of the normalized mean velocity profile, an upwind fetch of approximately 10
to 25 boundary-layer heights can be easily constructed. To fully simulate the normalized
turbulence intensity and energy spectra profiles, the flow-development section needs to
be extended to about 50 and 100 to 500 times the boundary-layer height, respectively.
These profiles must at least meet full-scale similarities in the surface layer region.
However, with the addition of spires and other flow tripping devices, the flow
development length can be reduced to less than 20 boundary layer heights for most
engineering applications.

In the U.C. Davis Atmospheric Boundary Layer Wind Tunnel, the maximum
values of turbulence intensity near the surface range from 35% to 40%, similar to that in

full-scale. Thus, the turbulent intensity profile, U’/ u versus z, should agree reasonably
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with the full-scale, particularly in the region where testing is performed. Figure D-2
displays a typical turbulence intensity profile of the boundary layer in the ABLWT test
section.

The second boundary-layer condition involves the roughness Reynolds number,
Re:. According to the criterion given by Sutton (1949), Reynolds number independence

is attained when the roughness Reynolds number is defined as follows.

u.z
Re =—"=¢

z

>2.5 (D-3)
A%

Here, u, is the friction speed, zo is the surface roughness length and v is the

kinematic viscosity. Re: larger than 2.5 ensures that the flow is aerodynamically rough.
Therefore, wind tunnels with a high enough roughness Reynolds numbers simulate full-
scale aerodynamically rough flows exactly. To generate a rough surface in the wind
tunnel, roughness elements are placed on the wind tunnel floor. The height of the
elements must be larger than the height of the viscous sub-layer in order to trip the flow.
The UC Davis ABLWT satisfies this condition, since the roughness Reynolds number is
about 40, when the wind tunnel free stream velocity, U, is equal 3.8 m/s, the friction
speed, u,, is 0.24 m/s, and the roughness height, zo, is 0.0025 m. Thus, the flow setting
satisfies the Re number independence criterion and dynamically simulates the flow.

To simulate the pressure distribution on objects in the atmospheric wind, Jensen

(1958) found that the surface roughness to object-height ratio in the wind tunnel must be



equal to that of the atmospheric boundary layer, i.e., zo/H in the wind tunnel must match
the full-scale value. Thus, the geometric scaling should be accurately modeled.

The last condition for the boundary layer is the characteristic scale height to
boundary layer ratio, H/5. There are two possibilities for the value of the ratio. If H/8 >
0.2, then the ratios must be matched. If (H/5)rs< 0.2, then only the general inequality of
(H/8)wr< 0.2 must be met (F.S. stands for full-scale and W.T. stands for wind tunnel).
Using the law-of-the-wall logarithmic profile equation, instead of the power-law
velocity profile, this principle would constrain the physical model to the 10% to 15% of
the wind tunnel boundary layer height.

Along with these conditions, two other constraints have to be met. First, the
mean stream wise pressure gradient in the wind tunnel must be zero. Even if high- and
low-pressure systems drive atmospheric boundary layer flows, the magnitude of the
pressure gradient in the flow direction is negligible compared to the dynamic pressure
variation caused by the boundary layer. The other constraint is that the model should
not take up more than 5% to 15% of the cross-sectional area at any down wind location.
This assures that local flow acceleration affecting the stream wise pressure gradient will
not distort the simulation flow.

Simulations in the U.C. Davis ABLWT were not capable of producing stable or
unstable boundary layer flows. In fact, proper simulation of unstable boundary layer
flows could be a disadvantage in any wind tunnel due to the artificial secondary flows
generated by the heating that dominate and distort the longitudinal mean-flow

properties, thus, invalidating the similitude criteria. However, this is not considered as a
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major constraint, since the winds that produce annual an average dispersion are
sufficiently strong, such that for flow over a complex terrain, the primary source of
turbulence is due to mechanical shear and not due to diurnal or heating and cooling

effects in the atmosphere.
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Figure D-1: Mean velocity profile for a typical wind direction in the wind tunnel.
The power law exponent a is 0.33. The reference velocity at 65 cm height is 3.55

m/s.
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Figure D-2: Turbulence intensity profile for a typical wind direction in the wind
tunnel.



