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Flexible, large area electronics—macroelectronics—using amor-
phous silicon, low-temperature polysilicon, or various organic and
inorganic nanocrystalline semiconductor materials is beginning to
show great promise. While much of the activity in macroelectronics
has been display-centric, a number of applications where macro-
electronics is needed to enable solutions that are otherwise not fea-
sible are beginning to attract technical and/or commercial interest.
In this paper, we discuss the application drivers and the technology
needs and device performance requirements to enable high perfor-
mance applications to include RF systems.

Keywords—Flexible electronics, large area electronics, macro-
electronics, thin-film transistors (TFTs).

I. INTRODUCTION

Flexible, large area electronics using amorphous silicon
(a-Si), low temperature polysilicon (LTPS), and organic
and inorganic nanostructured semiconductor materials is a
technology that is beginning to show tremendous promise.
Thin-film electronics, such as thin-film transistors (TFTs)
using a-Si and LTPS on rigid silicon and glass substrates are
mature technologies, primarily employed for driving active
matrix liquid crystal displays (AMLCDs) and image sensors
but also for photovoltaics to power remote or portable elec-
tronics. A major reason for the success of these TFT-centric
solutions is that solutions based on commercial silicon IC
microelectronics would not be economically viable.

Microelectronics technology has revolutionized com-
puting and communications associated with all manner of
systems. As device scaling continues, and we move fully
into the age of “systems on a chip” and “systems in a
package,” these advances will not only continue, but become
more pervasive. Yet, as revolutionary as microelectronics
has been, there are functions that are not well addressed by
conventional microelectronics technology. Since the driving
force behind microelectronics has been smaller and smaller
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devices in smaller and smaller areas, those applications that
require the electronics to be spread over a large area (macro-
electronics) are difficult or cost-prohibitive to achieve with
the conventional approach. An example of this shortcoming
can be understood by consideration of an active matrix flat
panel display. Here, there is a requirement for electronics
control at each pixel of the display that might cover an area
as large as 1 m . Other examples include solar cell arrays
where photo diodes must be spread over areas as large as
several square meters to collect sunlight sufficient to run
the equipment of interest, and x-ray imagers large enough
to capture images of the body without the requirement for
photographic film. In a similar fashion it is desirable to have
the capability of spreading electronics over a surface in
order to control or modify the surface characteristics or to
monitor the conditions over a large surface and not just at a
specific local site.

Establishing a viable manufacturing technology for
macroelectronics not only could result in lower cost elec-
tronics for certain applications, but the ability to fabricate
devices over large areas on flexible substrates would provide
a distributed, yet integrated, electronics capability for large
area applications. Further, with a flexible substrate, the
electronics package might be folded or rolled up for storage
when not operational. By reducing cost and complexity of
electronics and using a flexible substrate, it becomes easier
to distribute the overall electronics package over an entire
structure or area. To achieve these objectives a number
of technical challenges must be overcome. If existing IC
methods are to be replaced (augmented) in important elec-
tronics applications, then the materials, processes, and
devices available with current macroelectronics technology
must be significantly improved.

While electronic components like packaged ICs, resistors,
capacitors, inductors and various other passive elements such
as printed antennas on flexible substrates (RF on flex) have
been in use in one form or another for more than a decade,
what has not been achieved is the incorporation of active cir-
cuit elements such as diode and transistor arrays onto flexible
substrates. Such integration could have many advantages in
achieving space and weight reduction compared to standard
printed circuit board (PCB) approaches. While valuable, the
chip-on-flex method is limited when the active (transistor-
based) electronics must be distributed over a large area (such
as displays and imagers mentioned above). The advantages
of large area active electronics and the multiple possible form
factors and weight/space savings of flex has created a driving
force to combine these two capabilities. While the initial in-
terest is in replacement of existing products, there are many
opportunities for new applications and capabilities. To dif-
ferentiate this concept from well-known, existing technolo-
gies and because both the transistor dimensions (compared to
ubiquitous “microelectronics”) and the product applications
tend to be large sized, we refer to this class of technology as
“Macroelectronics.”

The solution to the flat panel display, solar cell array, and
x-ray imager problem is based on TFT-on-glass technology.
As noted above, methods have been developed to deposit and
process material that provides a large area, integrated device
array that delivers the required electronic function. Extension

Fig. 1. Flexible TFT arrays enabling technologies for a whole
range of applications.

of these approaches to flexible substrates has many poten-
tial advantages. This “next generation” flexible electronics
can be viewed as the creation of large area, monolithic ICs,
much as the creation of solid state ICs replaced interconnec-
tion of discrete parts on a circuit board. However, here the
substrate is a flexible support structure, rather than a silicon
wafer. The dimensions of the transistors need not be sub-
micrometer as is the case for today’s chip-based microelec-
tronics. Rather, micrometer-sized (1–10 m) features are ac-
ceptable and will facilitate cost-effective manufacture. While
such device dimensions will not provide the highest possible
performance, there are applications for electronic solutions
where high performance is not required. Rather, the driving
requirements are sensing/control of a large surface area, re-
duced system weight/volume/cost, or flexible form factor to
allow integration of the electronics package into the physical
structure. For example, if a conformal distributed electronics
platform were available, a number of distributed sensors, an-
tenna, and lighting elements could be integrated to provide
true real-time sensing and imaging of objects. These could
be used in military and avionic applications. Conformal elec-
tronics with integrated high-sensitivity imaging and sensing
elements would enable three-dimensional (3-D) medical im-
agers. Another interesting application with potential to be-
come pervasive is wearable electronics.

To help reach this goal, a variety of technologies to
fabricate distributed electronics based on TFTs and flexible
substrates are under investigation. The ultimate purpose
is to create a technology infrastructure that enables elec-
tronic solutions not feasible with today’s existing micro-
electronics-based manufacturing methods. If successful,
macroelectronics will open up a large set of applications
that are not currently served by Si CMOS adequately, as
shown in Fig. 1. The rapid commercialization and adoption
of macroelectronics ultimately depends on cost and perfor-
mance metrics for the given application.

While there are a number of new research initiatives on
large area macroelectronics around the world, in the fol-
lowing section, we would like to discuss important aspects
of the Macroelectronics program funded by the Defense
Advanced Research Projects Agency (DARPA), which
is exploring the technology as a solution for a variety of
problems. Over the last ten years, there were a number of
DARPA-sponsored research initiatives in flexible displays,
direct write electronics, thin-film photovoltaics, and batteries
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Fig. 2. Overview and objectives of the Macroelectronics program.

Fig. 3. Functional building blocks for a generic macrosystem.

that created the foundation to build macroelectronic systems
(see Fig. 2).

What the Macroelectronics program aims to achieve with
these diverse technologies is to help develop the necessary
application infrastructure to build high-performance sys-
tems. The current programs go beyond the limitations of the
current-generation TFT technology to adopt and develop
relevant manufacturing methods to provide integrated pro-
cessing. In the case of improving TFT performance, this
program proposes a paradigm shift by using nanomaterials
and novel inorganics to allow electronic feature sizes to
become bigger while maintaining acceptable performance.
Ultimately, all the building blocks necessary to build a
macroelectronic system as suggested by Fig. 3 should be
possible.

II. APPLICATION DRIVERS

Many of the most demanding military and aerospace
electronics applications are space-, weight-, and power-
(SWAP) constrained, yet the components must be kept
affordable if the overall system is to be viable. Advanced
technologies that address both the SWAP and cost factors of
future electronics are critical to maintaining the dominant
position in military systems. Therefore, the goal of the
Macroelectronics program is to develop novel form factor
technologies with the potential for increasing the utility of
electronic subsystems while at the same time offering sig-
nificant cost reductions over the existing paradigm. To reach
this goal, the emphasis of the Macroelectronics program is

Fig. 4. Cost assessment for macroelectronic application shows
that packaging large numbers of Si ICs becomes very expensive
when the surface area exceeds 1000 cm .

to identify and develop innovative technology to fabricate
distributed electronics based on TFTs and flexible substrates.
Specifically, the performance of TFTs will be comparable to
that associated with bulk semiconductor devices of similar
dimensions while cost-effectively manufactured on flexible
substrates. Development of this capability will be closely
coupled with system designers to ensure that proposed
Macroelectronics solutions meet all the technical and cost
requirements for a variety of large area, distributed, flexible
electronic subsystem applications. The ultimate purpose
is to create a technology that enables electronic solutions
not feasible with today’s existing microelectronics-based
methods. Examples include such diverse functions as di-
agnostic, control, and sense functions to manipulate the
properties and environment over a large surface (not just at
discrete points), integration of the electronics into the struc-
ture in order to free space/weight for other system functions
such as fuel, sensors, etc., or better human I/O interface in
electronic systems.

Additionally, while many other significant technology ad-
vances must occur, Macroelectronics may also provide tech-
nology to facilitate advanced prosthetics such as described in
previous work on “sensitive skins” [1].

Silicon CMOS wafers typically cost about 10 cm , and
compound semiconductors are even more expensive. Thus,
if many chips are required per subsystem the cost of just
the components can become prohibitive. A simple cost anal-
ysis highlights the issue at hand. For example, a cost as-
sessment for microelectronics and macroelectronics for large
area applications shown in Fig. 4, summarizes the cost dif-
ferential between the solutions for a distributed electronic
application with a 1000-cm area. A discrete IC solution is

$100 for just the components. Assembly costs can further
increase cost significantly. In contrast, the goal of the Macro-
electronics program is 0.1 cm 100 1000 cm .

Of course, low cost is no advantage if operation cannot
be achieved for relevant classes of problems. Hence, perfor-
mance must be significantly enhanced for solutions to be vi-
able. While cost is a significant factor in the drive to create
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a Macroelectronics technology, enhanced reliability matters
too. Rather than individual wires connecting a large number
of components on a surface, macroelectronics will enable
the simultaneous integration of all components onto the sub-
strate. From this perspective, the advantage is analogous to
the conversion from hybrid circuit technology to IC tech-
nology: the key difference, of course, being that macroelec-
tronics will produce a really, really big chip.

One of the most important and most challenging appli-
cations for the proposed macroelectronics technology is ex-
tending current TFT technologies to reach the RF levels of
performance needed to support very large, lightweight, low-
cost, active, electronically scanned antennas for Department
of Defense (DoD) communication and surveillance systems.
A multidisciplinary team is developing higher performance
TFT fabrication and materials technologies, enhanced TFT
design tools and software, and low-cost manufacturing tech-
niques for large area RF circuits on flexible plastic substrates.
The goal is RF circuit performance at over 500 MHz with ap-
plicability to large military active antenna systems operating
in the UHF or higher regime.

Given today’s geopolitical climate, the pressure to im-
prove the mission capability of unmanned aerial vehicles
(UAVs) is very high. The space, weight, power, and cost of
UAV avionics is driving engineers to look for alternative
methods of incorporating antennas and their associated
electronics into UAVs. However, current state-of-the-art
airframe designs have been pushed to their limits. Commu-
nications and additional electronic capabilities are desired
without compromising vehicle performance.

Many next-generation military RF surveillance systems
require very large active antenna arrays which are flexible
and conformal. Targeted systems include UAVs with an-
tennas conformally mounted to wing surfaces, airships with
large conformal antennas, and space systems which must
have antennas stowable in a small volume for liftoff and then
deployable in orbit to cover a large area. Antenna sizes of up
to 5000 ft or more are needed for these systems. Extremely
low weight is critical for airborne or space-borne applica-
tions, and low cost is required to attain system affordability
goals. Flexible plastic antennas incorporating flexible active
circuitry are ideal candidates to meet these requirements.
Active circuitry on these antennas includes low noise am-
plifiers (LNAs), RF switches, active RF combiners, and
digital control circuits. A number of these systems operate
in the UHF frequency range ( 500 MHz), while others
operate at S-band (5 GHz) or X-band (8–12 GHz). The
UHF systems have antenna diameters of up to 150 ft. While
Si-based TFTs may be able to support UHF applications,
higher performance devices will be needed to address S- and
X-band operation.

State-of-the-art antennas used to perform the above func-
tions are built today as stand-alone units. These antennas are
secondarily attached to the aircraft as fairings or protruding
surface mounted systems and are hard-wired to signal pro-
cessing and control systems within the platform. Protruding
antennas have a number of drawbacks including reduced air-
craft endurance due to increased drag and weight, and in-

Fig. 5. Military applications requiring large active antennas.

creased RF signature and required maintenance due to their
protruding nature. In addition, the electronics and associated
signal conditioning modules used to amplify, control and
process the signals from conventional antennas account for
a significant portion of the weight and space of the avionics
system. Hence, there is a need for conformal, nonprotruding
antenna systems with integrated electronics that overcome
the deficiencies of conventional systems. Conformal arrays
with integrated electronics, such as a transmit/receive (T/R)
module, offer significant benefits to the platform, including
the following.

• Increased aircraft endurance and integrity due to re-
duced drag and weight (by eliminating protruding an-
tennas and parasitic support structures, and reducing
the amount of wiring and associated cut-outs in the
structure).

• Increased performance due to larger apertures, reduced
losses by integrating the electronics in closer proximity
to the radiating elements, and greater flexibility in se-
lecting antenna placement locations on the platform.

• Multi- and/or wide-band RF performance and graceful
system degradation due to increased control with inte-
grated electronics.

• Reduced cost and downtime associated with mainte-
nance due to reduced overall system complexity.

• Reduced RF signature of the platform (by eliminating
protruding structures).

One of the demonstration vehicles for the program will
be a multichannel antenna subarray fabricated and tested in
the final phases of the project. The subarray will include low
noise amplifiers, RF switches, combiners, and power regula-
tion using macroelectronics TFT-based active components,
and matching networks and delay lines using macroelec-
tronic passive components implemented on the large flexible
substrate. The final demonstration will consist of a 2 ft 2 ft
flexible UHF radar antenna segment containing UHF-ca-
pable flexible TFTs, which can demonstrate scalability to the
larger sizes needed by emerging systems. Ultimate military
platforms for the technology include unmanned airborne
surveillance craft, airships, and ship-borne/space-borne
arrays, illustrated in Fig. 5.

Another goal of the large area electronics effort is to ex-
plore textile materials and textile manufacturing for building
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VHF, UHF, and microwave antennas. The technology would
then be exploited to manufacture novel electronic prod-
ucts. Examples are being applied at frequencies from VHF
through microwave in both active and passive applications.
The result is an ability to produce very large, lightweight,
low-cost and, if desired, flexible antennas for a variety of
terrestrial, airborne, and space-based applications.

Textile techniques utilize computer-controlled volume-
production manufacturing techniques to build sophisti-
cated arrays with the tolerances and repeatability afforded
by computer-automated textile processes. The result is
lighter weight and lower cost antennas than existing so-
lutions. Electronic textile manufacturing methods (such
as computer-automated embroidery of conductive threads,
laser-cutting and adhesion of conductive cloths, nonwoven
techniques, and metallic knits for building custom antennas)
are being investigated. The resulting antennas can also be
encapsulated into composite structures that could include
textile substrates to provide man-portable antennas for
enhanced communications and identification of friendly
forces.

While RF is a dominant and daunting challenge for ap-
plications of TFT to large area electronics, there are other
opportunities with significant operational payoff. The ability
to efficiently utilize the surface areas of large structures as
part of an intelligent sensor network will allow a larger,
highly responsive, complex system for real-time monitoring
and response. Electronics embedded with sensors over a sur-
face would provide area (versus point) coverage and provide
local processing of the sensor data to include amplification,
signal conditioning, routing, and switching. Maintenance of
a real-time operational database of structural information
can permit early warning of degradation, damage and the
potential for catastrophic failure, thereby minimizing a
structure’s lifetime cost.

The performance and behavior characteristics of nearly
all in-service structures can be affected by degradation
resulting from sustained use as well as from exposure to
severe environmental conditions or damage resulting from
external conditions such as impact, loading abrasion, op-
erator abuse, or neglect. These factors can have serious
consequences on the structures as related to safety, cost, and
operational capability. Therefore, the timely and accurate
detection, characterization, and monitoring of structural
cracking, corrosion, delamination, material degradation, and
other types of damage are a major concern in the operational
environment.

Structural health monitoring (SHM) is increasingly being
evaluated by the industry as a possible method to improve the
safety and reliability of structures and thereby reduce their
operational cost. SHM technology is perceived as a revolu-
tionary method of determining the integrity of structures in-
volving the use of multidisciplinary fields including sensors,
materials, signal processing, system integration, and signal
interpretation. The core of the technology is the development
of self-sufficient systems for the continuous monitoring, in-
spection, and damage detection of structures with minimal
labor involvement. The aim of the technology is not simply

to detect structural failure, but also provide an early indica-
tion of physical damage. The early warning provided by an
SHM system can then be used to define remedial strategies
before the structural damage leads to failure.

Another capability the program is developing is novel
SHM technologies through the use of built-in distributed
sensor networks integrated with composite and metal struc-
tures. The basic idea of the technology is to use a network
of distributed piezoelectric sensors/actuators embedded on
a thin dielectric carrier film to monitor and evaluate the
integrity of a structure. A diagnostic unit is used to collect
and process signals obtained during the monitoring process.
The signals can then be analyzed to determine the integrity
of the structure. In active mode, actuators generate prese-
lected diagnostic signals and transmit them to neighboring
sensors whose response can then be interpreted in terms
of damage location and size or material property changes
within the structure. In passive mode, the system can be used
as a continuously monitoring sensor network. Both modes
permit real-time structural analysis and evaluation along
with constant collection of structural data and information
while the structure/vehicle is in service. Current systems are
being tested for use in a variety of applications such as in
the monitoring of crack growth, bond-line repairs on multi-
riveted metallic joints and composites, hot spot monitoring
of inaccessible parts such as landing gears, monitoring of
machined parts such as frames and fittings, and monitoring
of pressure vessels. The technology can be employed to
constantly monitor critical areas on in-service structures,
equipment, and vehicles.

A major drawback of the existing technology is in its
networking capability with a multitude of sensors applied
to physically large structures. The greater the number of
sensors, the greater the number of wires and electronics re-
quired to connect and work with them. Although increasing
the number of sensors can to some extent improve the
resolution of detection of damage in a structure, it can at the
same time increase signal noise. Therefore, scalability of the
technology can be a major challenge. This issue can slow
down the time required to inspect a structure using a SHM
system and increase the cost of inspection. Both factors can
limit the use of the technology.

In order to resolve these issues, it is vital to reduce the
number of controlling wires and sensors on a structure. One
possible method to do this would be to use built-in switches
using TFT technology. The goal of the effort is to develop a
SHM system that can be applied to structures of any geom-
etry and configuration and has the capability for enhanced
damage detection using embedded control of the actuators
and sensors. The system will be versatile for application to
large or small (hot spot) structures that utilize a large number
of sensors and will be low cost.

Since nearly all in-service airborne, ground, and sea-based
vehicles, buildings, space, and weapons system platforms re-
quire some form of inspection and maintenance procedures
to monitor their integrity and health condition, to prolong life
span, or to prevent catastrophic failures, the potential appli-
cations of the developed system are very broad. Some near-
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term applications include large-scale rocket motors, military
and commercial aircraft, and reusable space launch vehicles.

The interest in higher performance, large area electronics
is not limited to the DoD. NASA is developing a variety
of deployable space system concepts for future missions
where very large structures are required. Examples are large
aperture radars 400 m , optical telescopes ( 10-m di-
ameter) and solar sails (meter to kilometer wide). For these
missions, low mass and volume systems such as thin-film
membranes with new lightweight deployment systems such
as inflatable and rigidizable structures are required. These
membrane systems will require integrated sensors for health
monitoring and shape sensing and in some cases shape con-
trol. To keep the mass low (e.g., mass density of 2–4 kg/m
for large aperture radars and a few grams per meter squared
for solar sails), it is essential to integrate the sensors with the
membrane. Therefore, macroelectronics is expected to be
a critical enabling technology if these demanding missions
are to be achieved.

Recent measurements of solid-earth surface deformation
using interferometric synthetic aperture radar (InSAR) have
enabled major advances in the scientific understanding
of crustal deformation associated with seismicity. InSAR
techniques are capable of providing centimeter-level surface
displacement measurements at fine resolutions (tens of
meters) over wide areas (hundreds of kilometers). Next-gen-
eration, large aperture 400 m InSAR systems hold the
promise of providing data that could better the scientific
understanding of global earthquake physics to the extent
that they might ultimately lead to an earthquake forecasting
capability [2], [3]. These SAR systems will provide fine
temporal sampling (on the order of hours to days) in order to
capture the subtle effects associated with fault interactions
and strain accumulation between earthquakes. Moreover,
revisit times on the order of minutes can be used for disaster
response scenarios.

The extremely large mass and stow volume of the current
rigid manifold phased array antennas will make it almost
impossible for the radar to fit in existing launch vehicles [5],
[6]. Therefore, for such large apertures, new technologies
such as the Jet Propulsion Laboratory’s (JPL’s) lightweight
membrane antenna shown in Fig. 6 are ideal. Where mem-
brane-based antennas are assumed, conventional packaging
technologies are currently being considered for placement
of T/R modules [7]. Although innovative, this approach
has reliability challenges in addition to the high cost of
integrating individual electronic components. Hence, the
macroelectronics approach is a paradigm shift that could
solve these issues.

Two critical problems need to be solved before active
membrane antennas can be implemented in space.

1) Array calibration: Since a membrane-based antenna
lacks structural rigidity, the array is prone to de-
formation due to thermal and mechanical forces. In
turn, this affects the phase stability of the array and
compromises its performance. Therefore, macroelec-
tronics-based sensors for detection and correction

Fig. 6. Passive membrane antenna for SAR applications [4].

Fig. 7. A conceptual view for a proposed structural health system,
based on integrated sensing and adaptive capabilities (Courtesy
of Erik Brandon at JPL). The development for this system is
currently supported by the NASA Exploration Systems Research
and Technology (ESR&T) Program.

of parameters such as planarity and temperature are
essential. Other health monitoring components, such
as sensors for detecting tears and punctures, are also
required.

2) Integration of T/R modules with the membrane: Due
to the number of T/R modules on a very large array,
macroelectronics-based T/R modules can assist with
integration, reliability, performance, manufactura-
bility, and cost of active membrane antennas.

Additional applications for macroelectronics-based solu-
tions are also anticipated. Fig. 7 shows a conceptual health
monitoring system for the TransHab space habitat [8]. A
real-time health monitoring system for detecting adverse
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conditions and their location and initiating corrective ac-
tions is critical to improving crew safety and the time spent
monitoring structural problems and their repair. This system
is composed of a network of integrated thin-film sensors
and control mechanisms embedded into the multilayer
structure. Structural defects and cracks will be detected
and located automatically; for smaller defects, a passive
self-healing mechanism will correct the problem. Embedded
actuators interfaced with embedded strain gages will be
used for controlling static and dynamic loads. Integrated
temperature sensors and variable emissivity material will be
used for temperature control of the habitat. Integrated TFT
technology will enable these low mass future systems.

Another example of the potential for large area electronics
is for remote sensing of deep space and the cosmos. This
relies on increasingly larger and larger telescopes with in-
creased sensitivity and spatial resolution. The James Webb
Space Telescope, a 6-m telescope flying at L2, will identify
and study the first stars born in our universe. SAFIR, a 10-m
mid- and far-IR telescope, will probe the formation of plan-
etary systems in our galaxy. The Terrestrial Planet Finder, an
8 m 4 m telescope, will image Earth-like planets around
nearby stars and give us crude spectra of their disk-integrated
atmospheres and surfaces. Succeeding generations of space
telescopes will be larger and require even greater optical pre-
cision, which is only achievable by driving down the mass of
a telescope’s collecting area while increasing our ability to
achieve and maintain the precise optical figure needed to ob-
tain pristine images.

Integrated macroelectronics would represent an enabling
technology for these future telescopes. Fine-grained active
thermal control for both telescope mirrors and support struc-
tures using integrated sensors, heaters, and variable-emis-
sivity elements will minimize thermal deformations and the
resulting aberrations, leading to low-mass telescope designs
which in turn would allow large collecting areas to be
launched. Active shape control of optical surfaces using em-
bedded/integrated shape sensing and actuator elements will
lead to further improvements in the key kilograms per meter
squared area density metric. Along this technology path are
large ( 10-m-diameter) membrane mirrors, with layers of
reflective material, structural support, and macroelectronic
sensing and control elements which maintain precise figure
control. With these large lightweight mirrors, the telescopes
of 2020 and the years beyond will cost-effectively tackle
future scientific challenges.

III. HIGH-PERFORMANCE DEVICES

While current TFT technology is highly developed, it is
limited in what applications it can address. For instance, a
major interest is to apply TFT technology to flexible sub-
strates. Significant effort has been made to provide this ca-
pability for displays, but with only limited success. Further,
TFT circuit performance has been limited by relatively poor
device characteristics compared to bulk Si. Existing methods
are constrained by materials and/or substrate process limita-
tions and result in TFTs with low mobility that supports only

Fig. 8. Capabilities of the TFT backplanes versus system
applications which can be enabled.

low-frequency circuit operation. Thus, applications that re-
quire even modest computation, control, or communication
functions cannot be addressed by today’s TFT technology.
To achieve the desired ability to implement large area elec-
tronic functions, it is necessary to significantly improve TFT
device performance and to develop cost-effective fabrication
methods that are compatible with flexible substrates.

Flexible circuits built with existing a-Si and LTPS device
technologies have mobilities one to two orders smaller than
those built on crystalline silicon. To highlight the need for
higher mobilities, we present in Fig. 8 a map of mobility
versus applications that can be enabled for a particular mo-
bility regime.

While device structures and materials with high electron
mobility to achieve high performance are the focal point
of the effort, there are several other factors that must also
be considered. Perhaps most significant is the need for
thin, but reliable, gate dielectrics to allow relatively low
voltage operation. Low-resistance ohmic contacts will also
be essential to minimize the effects of parasitics on device
performance. Since it is difficult to make small devices
over large areas, it is essential to minimize parasitics which
degrade RF performance from that based on semiconductor
material parameters. From a circuit perspective, high device
yield and uniformity must be achieved. Finally, the metal
interconnects must provide both low resistance and durable,
rugged performance when the substrate is flexed.

Because there is significant literature already available that
describes efforts at improving the device/circuit characteris-
tics of conventional Si-based TFTs, no description of their
current status is needed here. The interested reader is re-
ferred to the review papers in the current issue of this journal,
recent publications [9], and several excellent reference vol-
umes [10], [11]. Instead, efforts that focus on device design
and novel device concepts seeking to overcome current limi-
tations and extend TFT technology into new macroelectronic
arenas are summarized.

Current TFT fabrication and design techniques have not
been optimized or even evaluated for application in the mil-
itary frequency ranges of interest described above. Perfor-
mance for RF applications is being addressed by developing
high-mobility polysilicon TFTs using temperature-annealed
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Fig. 9. TFTs are currently being fabricated on flexible metal foils
with performance of several hundred megahertz.

Fig. 10. Next-generation TFT fabrication runs on metal foils and
plastic films consist of RF designs and other features supporting
accurate model parameter extraction.

and laser-crystallized techniques. RF TFTs also need rela-
tively short 1 m and wide (400 m or more) transistor
sizes. Issues of scalability, low gate resistance, and low on-re-
sistance are being addressed for low-noise amplifiers (LNAs)
with high gain and low noise figures and low-loss switches.
These improved TFTs are currently being fabricated on thin
flexible metal films, with a digital circuit performance of sev-
eral hundred megahertz, as shown in Fig. 9 [12]–[15].

A next generation of designs is now underway containing
a number of RF structures, as shown in Fig. 10. Techniques
for fabricating these TFTs directly on flexible plastic films
with higher performance and lower cost are also underway.

The Macroelectronics project is also exploiting advanced
modeling capabilities by enhancing AIM-SPICE to provide
capability for modeling RF circuits. Extending the modeling
capabilities down to 1- m channel lengths has been per-
formed, and noise modeling and S-parameter capabilities are

Fig. 11. TFT modeling enhancements include 2-D visualization.

being incorporated. The modeling is also being fitted with
extracted data from the high-performance TFT process, pro-
viding RF designers capabilities for designing radar circuits.
Two-dimensional (2-D) models, shown in Fig. 11, are also in
development to provide a higher level of model fidelity and
assistance in improving TFT reliability.

In order to enhance the performance of TFTs, laser crys-
tallization has been the industry approach. Among the var-
ious crystallization approaches, sequential laterally solidified
(SLS) silicon is a preferred method to achieve high mobili-
ties. In SLS, laser crystallization of an a-Si film is performed
using a patterned excimer laser beam sequentially flashed
onto the film, leading to large-grain polycrystalline silicon,
or even single-crystal silicon regions [16], [17]. This method
is distinct from the excimer-laser annealing method, which in
general provides lower TFT mobilities and has lower equip-
ment throughput. SLS crystallization to produce high-mo-
bility TFTs for displays on glass substrates is in production
[18]. But SLS has only very recently been implemented on
polymer substrates as part of the DARPA Macroeelctronics
Program, with n-channel field-effect mobilities greater than
400 cm V s on polymer substrates recently achieved [19],
[20]. Successful development of SLS crystallization on flex-
ible substrates will be a major enabler for a variety of new
applications.

For even higher performance applications, compound
semiconductors are the material of choice just as with
conventional crystalline microelectronics. Therefore, given
the potential of SLS to provide quality polycrystalline Si, it
is also of interest to explore SLS for other semiconductor
materials. Such materials as Ge, GaN, SiC, and InP can in
principle be deposited at low temperature and heated via
laser to crystallize areas large enough and with mobilities
high enough to provide useful device characteristics. Among
the additional challenges in successfully developing this
approach is the requirement to deposit and anneal in the
appropriate background ambient to achieve the appropriate
elemental ratios for the crystallized materials.

Recent results promise far better TFT devices from certain
polycrystalline compound semiconductors than from polysil-
icon. Polycrystallinity means a high concentration of grain
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boundaries, which normally degrade the transport proper-
ties [21] of polycrystalline transistors by means of Fermi
level pinning. Even more strongly than silicon, most (but
not all) III–V compound semiconductors, pin the Fermi level
midgap at surfaces such as grain boundaries, resulting in
large barriers to transport, depletion of the grains’ interiors
[22], and lowering the conductivity. Fermi level pinning at
the interface to the gate also prevents field-effect modula-
tion of a channel’s conductivity, further degrading transistor
performance [23].

Poly-InAs, however, remarkably exhibits two anomalous
properties. First, its surface Fermi level pins above the
conduction band edge, resulting in accumulation rather than
depletion at surfaces such as grain boundaries [24], [25].
Second, its electron effective mass is about an order of
magnitude lighter than silicon’s, resulting in proportionately
higher mobility. These two properties in combination greatly
reduce the barrier to carrier transit across grain boundaries
and throughout highly defected material. Furthermore, the
wide separation between the conduction band minimum
and satellite conduction band valleys is predicted to support
a peak saturated drift velocity of about 8 10 cm/s in
single-crystal material [26], which is at least an order of
magnitude faster than the of ideal single-crystal silicon.
Thin films of InAs have been under development since 1968,
and have already demonstrated electron mobilities [27], [28]
in the range of 800–3000 cm V s. These experimental
results are consistent with InAs TFTs achieving cutoff fre-
quencies above 1 GHz for a 10- m feature size and above
10 GHz for 1 m L . If these results can be integrated
into large area processing and extended perhaps to other
semiconductors, a major limitation of TFT-based electronics
could be circumvented.

As deposition and crystallization of semiconductors on
flexible, low-temperature substrates is a significant problem,
nonthermal means of providing high mobility semicon-
ductors are also being explored. These approaches include
TFTs made from microstructured silicon or nanowire tran-
sistors. Both have the capability to provide highly crystalline
semiconductor materials by a variety of printing/depo-
sition methods that do not require thermal processes to
achieve high-quality semiconductors. This approach uses
micro/nanoscale objects—nanotubes, nanowires, ribbons,
disks, platelets, etc.—of high-quality single-crystal semi-
conductors. A collection of these building blocks constitutes
a type of material that can be deposited and patterned, by
dry transfer printing or solution casting, onto plastic sub-
strates that forms an effective semiconductor layer to yield
mechanically flexible TFTs that have excellent electrical
properties [29]–[34]. Because this approach separates the
semiconductor growth process from the device substrate,
it is independent of traditional requirements for epitaxy,
thermal budgets for processing and other considerations. As
a result, it is well matched not only to flexible electronic
systems on plastic substrates but also to devices that require
heterogeneous or 3-D integration.

A key feature of these objects is that they are formed
directly from conventional wafers using lithography and

Fig. 12. (a) Optical and scanning electron micrographs of wires
and ribbons of single-crystal inorganic semiconductors, produced
by lithographic processing of conventional wafers. Collections of
these elements can be printed onto low-temperature substrates,
such as plastics, to form the semiconductor component of flexible
electronic devices. (b) Image (left) of an array of TFTs on plastic
which use printed silicon ribbons as the semiconductor, and typical
current–voltage characteristics (right) from one of these devices.
The performance of devices of this type can approach that observed
in conventional silicon MOSFETs [31], [32].

etching steps. As a result, they naturally exploit the highly
developed crystal growth and doping technologies that
have emerged from decades of effort in the semiconductor
industry. Solution or dry transfer printing them onto plastic
substrates can yield high-performance flexible TFTs. This
type of approach has been successfully demonstrated for
highly bendable device arrays of modest size [left frame,
Fig. 12(b)], and it is scalable to large areas [30], [32].
The right frame of Fig. 12(b) shows the characteristics
of a typical device that uses an organized array of silicon
ribbons. The level of performance—mobilities greater than
300 cm V s, on/off ratios as high as 10 exceeds, by a
large margin, the previous best for transistors formed by
printing onto plastic substrates.

Although the problems associated with thermal depo-
sition and recrystallization are circumvented with this
approach, for low-temperature processing the challenge of
achieving high gate dielectric integrity remains, and there is
the additional difficulty of achieving low-resistance source
and drain contacts without performing a high-temperature
implant activation step, which may require laser processing
of the source–drain regions. One strategy to avoid these
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Fig. 13. f and f calculated from S-parameters taken at
multiple bias points. V was set at �1, �2, or �5 V and V was
swept from �2 to �7 V. f was calculated from both maximum
available gain and from unilateral power gain.

problems involves growing the dielectric and performing
the doping before the semiconductor is printed onto the
low temperature substrate [33]. Even without these types of
schemes, however, work to date indicates that mobilities of

200 cm V s can be achieved for devices with channel
lengths sufficiently long that the effects of the Schottky con-
tacts do not severely degrade device performance. Non-RF
optimized devices fabricated with the nanoribbon/wire ap-
proach with gate lengths of 2 m have shown of over
100 MHz (see Fig. 13). Even better results can be expected
for compound semiconductor devices which can also be
fabricated via this method.

Single-wall carbon nanotube (SWNT) TFTs have received
significant attention for microelectronic applications recently
because of their unique properties, including potential mobil-
ities of 10 000 cm V s or higher, as well as the ease and low
expense of producing them in large quantities. These same
properties make them attractive for large area electronics be-
cause of the potential for achieving extremely high field-ef-
fect mobilities on plastic substrates, with the semiconductor
deposited from a liquid at room temperature, perhaps using
printing methods [34]. For these applications, the SWNTs
can exist in the form of random network [35], [36] or aligned
arrays [37] between the source and drain electrodes of the
TFT. Fig. 14 shows an image of an array of tubes formed
by guided growth, and the output characteristics of a device
fabricated with a similar collection of tubes [38]. In both the
array and the network geometries, good performance can be
obtained—mobilities of 100 cm V s or better and on/off
ratios greater than 1000. Due to the extremely high intrinsic
per-tube mobilities, it is expected that very high device mo-
bilities will be possible by increasing the fill factor of tubes
from the current relatively low values of 1%–2%.

Several major challenges must be overcome in order to
take full advantage of carbon nanotubes as an electronic
material. A major barrier to very low temperature processing
is the gate dielectric; it is difficult to form low-temperature
deposited dielectrics with high dielectric integrity and with
low hysteresis for the tube devices. Next, since carbon nan-
otubes (as-grown) consist of a mixture of semiconducting
and metallic tubes, a means must be found either to remove
the metallic tubes selectively or render them insulating;
otherwise, the metallic tubes will act as shorts. Finally, for
maximum device performance, it is desirable to have a high
density of nanotubes aligned in parallel between source and

Fig. 14. (a) Scanning electron micrograph of an array of SWNTs
formed by guided growth. The coverage of tubes in this case is
�1%. (The apparent width of the tubes in this image is much larger
than the actual width). (b) Current–voltage characteristics for a
typical device. Mobilities larger than 100 cm =V � s are possible.

drain; therefore, just as in the case of other semiconductor
nanowires, a reliable means must be developed to orient
and position the nanotubes. Here again, not only may this
approach provide a means to high performance devices
for large area electronics, but as with the nanowire type
approach, “printing” of C nanotubes may also be a viable
route to 3-D and heterogeneous integration.

An area beyond the scope of this paper is the development
of model and simulations tools that can be used for device
and circuit design as well as predictive engineering. Since
these devices are not single “wires” or single crystals, but
rather an ensemble of particles, the aggregate behavior as
well as interfering effects must be consider. While only
limited work has been completed to date, nonetheless, very
encouraging results that provide good agreement with exper-
iment have been achieved. Alam has developed an analytical
SPICE-like compact model for TFTs based on nanobundle
composites with wire density below the percolation limit
[39]. They identified three variables—channel length to tube
length, channel length to mean free path, and tube density
to percolation density—as controlling the transport prop-
erties of macroelectronic TFTs. This model could be used
to optimize nanobundle transistors and sensors and allow
overall system design based on conventional SPICE-based
simulation tools. Further, they developed a self-consistent
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linear electrothermal percolation model for TFTs based on
nanobundle composites appropriate for all densities and
channel lengths. This model explains the channel length
dependencies of conductance for the available experimental
data published to date in the literature. The next step is to
generalize this work to a self-consistent transistor model
that can be used to design devices for macroelectronic
applications and develop statistical VLSI design techniques
for circuits based on flexible components (whose parame-
ters may be changing randomly as a function of time) for
macroelectronic applications.

Finally, a non-semiconductor solution is also being ex-
plored. An ideal technology for macroelectronics would be
one that is ultrafast, compatible with nearly any substrate, re-
quires only low-temperature processing, and is inexpensive.
Metal–insulator electronics has the potential to fit that ideal
because the active device is composed of amorphous mate-
rials and avoids the troublesome issues of grain boundaries.

The basic building block is the metal–insulator–metal
(MIM) tunnel junction. Electrons tunnel from one metal
layer to another through an ultrathin (2–3 nm) insulator
on the order of 1 fs and provide diode current–voltage
characteristics. Generally, these characteristics are “soft”
because the metal–insulator junction produces only a weak
nonlinearity. However, a double-insulator (MIIM) diode
[40] exhibits dramatically sharper nonlinearity, resulting
from a quantum well formed between the two insulators. It
is hoped that this will enable practical thin-film diodes for
rectification of ultrahigh frequency signals. Small, prototype
metal insulator diodes have been fabricated and tested be-
yond 200 GHz. The challenge is now to develop a controlled
process that not only provides the desired MIIM structure
and characteristics, but one that can be fabricated reliably on
flexible substrates over large areas.

The concept of a MIMIM tunneling transistor has existed
for decades. In this transistor, outer layers of metal form the
emitter and collector, and electrons tunnel through a thin base
metal layer sandwiched in the middle, between two thin insu-
lators, as shown in Fig. 15(a). The middle metal base region is
thin enough that hot electrons injected from the emitter junc-
tion flow through the base without significant scattering. In
this way, current injected into the base controls current from
emitter to collector, thereby providing current gain. As with
the single-insulator MIM diode, the MIMIM tunneling tran-
sistor has poor performance characteristics. A major reason
for the poor performance is that the tunneling electrons have
a broad energy distribution, as depicted in the figure. With
a double insulator situated between the emitter and the base,
the performance of the MIIMIM tunneling transistor [41] im-
proves dramatically. As depicted in Fig. 15(b), the quantum
well provides allowed states that substantially narrow the en-
ergy distribution of the tunneling electrons, resulting in a
sharper turn-on and higher gain.

The predicted performance is for an fmax of 3.8 THz at a
power output per device of 1 mW. In addition to the poten-
tial for tremendous performance, the devices can be made
using standard fabrication facilities and materials. Because
the metal–insulator technology depends on thin vertical

Fig. 15. Concept of a MIMIM tunneling transistor.

dimensions, performance is not expected to degrade signifi-
cantly when deposited on flexible substrates and over large
areas. However, there are numerous material engineering
challenges to be overcome in any thin-film technology. In
addition, parasitic elements of large macroelectronic devices
will need to be understood and their impact included in
device models. Current efforts are directed at developing the
required materials and deposition technology to provide the
desired thin-film structure. Subsequent work will charac-
terize the device performance and reliability.

IV. MANUFACTURING

The growing interest in high-performance, large area,
low-cost electronic devices and systems fabricated on flex-
ible substrates requires new process tools and methods.
Conventional approaches do not allow for rugged, light-
weight, flexible, large area macroelectronic circuits incor-
porating high-mobility transistors. Technologies to provide
this capability are under development in three major areas:
enhanced TFTs and novel, nanomaterial-based devices as
described above, process technologies compatible with large
area, flexible, and low temperature substrates, and patterning
technologies that can provide micrometer-scale features and
alignments over a variety of substrate types and sizes. A
major reason for the interest in macroelectronic circuits with
the critical dimensions in the 1–10- m range is that they can
be made using processing methods which do not require the
complex, costly methods associated with microelectronics.
However, for such circuits to become useful, they have to be
built on large substrates (10 cm to several square meters).
This is now being done in production for AMLCDs on glass,
as shown in Fig. 16. Thus, there is an existing proof that
electronics manufacturing over a large area can be done cost
effectively.

Flexible, large area electronics will be most successful
when similar capability exists for plastic substrates.

Macroelectronics will ideally benefit from the large
investment in manufacturing infrastructure being made by
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Fig. 16. Seventh-generation (Gen 7) AMLCD glass substrates.

the display and photovoltaic industries. Such methods as
sequential lateral solidifaction and rapid thermal processing
are expected to be applicable to large area electronics as
well. The method of choice for fabrication of these elec-
tronic components is “roll-to-roll” because of the assumed
compatibility with flexible substrates and low cost. How-
ever, there are considerable challenges to be overcome. The
main issues to be addressed are covered well by Sheats [42].
Other manufacturing related topics are also discussed in
these PROCEEDINGS (see papers by K. Allen, R. Parashkov,
M. Chabinyc, K. Jain, and R. Ludwig).

In order to fully exploit the high mobility performance
of the semiconductors developed in the macroelectronics
effort, it is necessary to perform lithography with microm-
eter-scale critical dimensions and registration tolerances.
However, large area patterning with high resolution is a sig-
nificant challenge. In addition to standard photolithography,
large area soft lithography techniques that permit microm-
eter-scale critical dimensions and registration tolerances,
as well as high-resolution embossing and delamination
methods will be evaluated. The emphasis here is not to
develop new approaches as much as to exploit those capa-
bilities being created by the microelectronics and display
industries and adapt where necessary for those aspects of
the macroelectronics program that are unique.

Direct writing techniques may have more of a role for
custom, large area electronics than would be possible for
low-cost, high-volume manufacturing [43]–[45]. Direct
writing techniques could provide cost-effective, rapid re-
sponse fabrication of custom, low-volume special purpose
macroelectronics. Here, methods like ink-jet printing may
be especially attractive. Specialized methods such as thermal
spray [46] could provide novel methods for metallization
and direct deposition of passives such as resistors, capaci-
tors, and antenna patterns. Laser transfer of fully processed
chips may also be important to provide critical, high-perfor-
mance components not available via roll-to-roll processes
or to provide faster and more adaptable and cost-effective
assembly than is possible via pick and place [47].

Materials are a critical element of almost any new elec-
tronics program. However, again other large area electronic
applications are the primary driver. Barrier coatings (to
prevent degradation from water, oxygen, or sunlight) and
dielectrics are not expected at this time to be unique. How-
ever, given the desire for significantly higher performance
than with conventional TFTs, it may be necessary to de-
velop novel materials and/or fabrication processes for the
gate dielectric if performance commensurate with high
mobility is to be realized. Substrates are an area where new
approaches may be possible because transparency is not
an issue. Besides thin metal foils, plastic films capable of
withstanding processing temperatures of over 500 C such
as various silicone resins [48] allowing the high performance
(and high fabrication temperature) TFT processes to be done
directly on the plastic film can be explored. As mentioned
previously, textile substrates can also be considered either
to provide better manufacturability, lower cost, or ease of
integration into wearable structural elements [49], [50].

Finally, since one of the main attractions of macroelec-
tronics is “flexibility,” a major issue that must be resolved is
just what is meant and how might it be achieved. No doubt
there are some applications where a rigid substrate (such as
today’s flat panel displays) is adequate. In other situations,
a bendable or conformable substrate might be adequate, in
others, rollable. At the far end of the spectrum, the flexible
elctronics might actually be crumpled. Currently, the major
efforts in flexible electronics are addressing performance and
reliability. However, some promising work has been reported
on stretchable interconnects by Wagner [51].

The program is developing new approaches to electrically
and mechanically interconnect flexible elongated body struc-
tures that contain microelectronic elements to form systems
that can be installed over large surface areas with complex
geometrical characteristics, such as compounded radii of cur-
vature, or that can be rolled or folded for transportation and
which can be rapidly deployed for use in the field.

Two of the approaches currently being developed are
schematically illustrated in Figs. 17 and 18. In each case,
passive and active electronic components such as conduc-
tors, resistors, TFTs, and others are fabricated on elongated
prismatic substrates such as thin and narrow strips and
circular cross section filaments, and the latter are assembled
to form large prismatic integrated networks (PINs).

In the approach illustrated in Fig. 17, referred to as PIN
on BUS, microelectronic circuits are fabricated on elongated
substrates, which are in turn connected to a single or multiple
electrical bus. The dimensions of the individual prismatic
substrates are adjusted to achieve the desired area coverage
once installed on the targeted structure (e.g., airfoil) and also
to ensure that physical integrity and device performance are
maintained.

In the approach shown in Fig. 18, the elongated prismatic
structures are woven together and electrically interconnected
to form large area networks containing optoelectronics de-
vices, sensing and actuating elements, power sources, and
others, and which can readily be rolled or folded, even in
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Fig. 17. Schematic diagram illustrating how flexible elongated
prismatic elements, such as thin strip or filaments having
predetermined dimensions may be connected to a flexible bus and
mounted on complex surfaces.

Fig. 18. Photographs (top and bottom left) illustrating how
rectangular cross section strips and circular section rods may be
woven and interconnected to form large area structures that may be
rolled or folded. A schematic diagram how the elongated structure
may be assembled is shown on the right.

cases where the individual strips or filaments have relatively
low flexibility.

V. CONCLUSION

Macroelectronics has the potential to open new directions
in electronics: directions not based on ever-higher levels of
integration and performance, but on fulfilling roles that con-
ventional microelectronics cannot. In other papers in these
PROCEEDINGS, the case is made for “plastic electronics” that
seeks to apply low-cost, roll-to-roll type processing to make
simple, inexpensive, “throwaway” electronics. This is one
example of a new dimension. In this paper, we have de-
scribed another dimension—once again, not based on re-
placing microelectronics (perhaps even exploiting it where
appropriate), but on providing a capability that microelec-
tronics is not suited for. Specifically, macroelectronics hopes
to provide solutions to problems that require the electronics
to be physically large and interconnected such that an entire

area and not just discrete points can be monitored, measured,
and modified as needed.

The success of the flat panel display industry and the
rapidly developing photovoltaic industry are testaments to
the need for large area electronics solutions. However, there
are needs that go far beyond these existing technologies.
Conformal and flexible form factors to provide portability
and ability to install the large area electronics in a variety
of locations and form factors is one very desirable attribute
that is receiving much attention and is proving to be quite
difficult. Even more difficult is to not just integrate a flexible
substrate, but also to maintain or even improve electrical
performance. It is this capability that we have stressed
herein. We have described a variety of challenging applica-
tion drivers such as RF sensor arrays and physical integrity
monitors, but once capability for these types of applications
becomes available, then commercial applications will likely
follow (for example, “systems on a display panel”).

The keys to achieving the desired levels of functionality
are advances in device technology that can be manufac-
tured cost effectively over large areas and process methods
that provide these high-performance devices and their in-
terconnections at adequate levels of integration in high
yield on flexible substrates with tools that can be oper-
ated at reasonable throughput/cost. Much of the required
advances in process and tools will come from the display
and photovoltaic industry. But to achieve the device/circuit
performance for demanding applications, significant im-
provement in materials and device characteristics must be
achieved.

We have described several potential routes to enhanced de-
vice performance. These include further refinements of the
existing polysilicon TFT technology to improve both device
characteristics and uniformity and to achieve modest RF per-
formance. Better understanding of the crystallization process
and the effects of defects on alternative semiconductors may
lead to integration of materials that can provide significant
improvement over today’s TFTs. However, given the diffi-
culty of understanding and overcoming defects in semicon-
ductors, entirely alternative approaches are also being pur-
sued. Rather than try to minimize the impact of defects, cer-
tain defect-tolerant and nanostructured semiconductors and
CNT-based TFT technology seek to avoid the effects of de-
fects rather than the presence of them. Finally, an even more
novel idea is to not use semiconductors at all. Rather, build
devices that can operate with high performance, but with
amorphous materials (which are the most compatible with
low temperature, high throughput, large area processing). To
achieve this capability, devices based on MIM diode con-
cepts are being pursued.

It is much too early to know which, if any, of these new
concepts can be brought to fruition. But, as this paper and
these PROCEEDINGS show, there are strong driving forces to
create macroelectronics. So, while microelectronics and now
nanoelectronics continue on the road to smaller and smaller,
there are also many in the electronics community pushing the
idea that “bigger can be better.”
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